题目内容
【题目】对于一元二次方程,下列说法:
①若,方程有两个不等的实数根;
②若方程有两个不等的实数根,则方程也一定有两个不等的实数根;
③若是方程的一个根,则一定有成立;
④若是方程的一个根,则一定有成立,其中正确的只有( )
A. ①②④ B. ②③ C. ③④ D. ①④
【答案】D
【解析】
由a+c=0,a≠0,可知a、c异号,即可得△=b2-4ac>0,所以方程有两个不等的实数根,①正确;当c=0时不成立,②不正确;若c是方程ax2+bx+c=0的一个根,当c=0时,ac+b+1=0不一定成立,③不正确;若m是方程ax2+bx+c=0的一个根,所以有am2+bm+c=0,即am2= -(bm+c),而(2am+b)2=4a2m2+4abm+b2=4a[-(bm+c)]+4abm+b2=4abm-4abm-4ac+b2=b2-4ac,④正确.
①因为a+c=0,a≠0,所以①a、c异号,所以△=b2-4ac>0,所以方程有两个不等的实数根;
②当c=0时不成立;
③若c是方程ax2+bx+c=0的一个根,当c=0时,ac+b+1=0不一定成立;
④若m是方程ax2+bx+c=0的一个根,所以有am2+bm+c=0,即am2= -(bm+c),而(2am+b)2=4a2m2+4abm+b2=4a[-(bm+c)]+4abm+b2=4abm-4abm-4ac+b2=b2-4ac.
所以①④成立.
故选D.
练习册系列答案
相关题目