题目内容
【题目】已知,如图,点B、F、C、E在同一直线上,AC、DF相交于点G,AB⊥BE,垂足为B,DE⊥BE,垂足为E,且AC=DF,BF=EC.求证:
(1)△ABC≌△DEF;
(2)FG=CG.
【答案】见解析
【解析】
试题分析:(1)首先利用等式的性质可得BC=EF,再有条件AC=DF可利用HL定理证明Rt△ABC≌Rt△DEF;
(2)根据全等三角形的性质得到∠ACB=∠DFE,根据等腰三角形的性质即可得到结论
证明:(1)∵BF=CE
∴BF+FC=CF+FC,
∴BC=EF,
∵AB⊥BE,DE⊥BE,
∴∠B=∠E=90°,
在Rt△ABC和Rt△DEF中,
,
∴Rt△ABC≌Rt△DEF(HL);
(2)∵Rt△ABC≌Rt△DEF,
∴∠ACB=∠DFE,
∴FG=CG.
练习册系列答案
相关题目