题目内容
【题目】(本题满分8分)
如图,点E,F在BC上,BE=CF,∠A=∠D,∠B=∠C,AF与DE交于点O.
(1)求证:AB=DC;
(2)试判断△OEF的形状,并说明理由.
【答案】
(1)证明略
(2)等腰三角形,理由略
【解析】(本小题满分8分)
证明:(1)∵BE=CF,
∴BE+EF=CF+EF, …………1分
即BF=CE. …………………2分
又∵∠A=∠D,∠B=∠C,
∴△ABF≌△DCE(AAS), ……………………………………4分
∴AB=DC. ………………………………………5分
(2)△OEF为等腰三角形 …………………………………6分
理由如下:∵△ABF≌△DCE,
∴∠AFB=∠DEC.
∴OE=OF.
∴△OEF为等腰三角形. …………………………………8分
练习册系列答案
相关题目
【题目】某公司招聘职员两名,对甲、乙、丙、丁四名候选人进行了笔试和面试,各项成绩满分均为100分,然后再按笔试占60%、面试占40%计算候选人的综合成绩(满分为100分).
他们的各项成绩如下表所示:
修造人 | 笔试成绩/分 | 面试成绩/分 |
甲 | 90 | 88 |
乙 | 84 | 92 |
丙 | x | 90 |
丁 | 88 | 86 |
(1)直接写出这四名候选人面试成绩的中位数;
(2)现得知候选人丙的综合成绩为87.6分,求表中x的值;
(3)求出其余三名候选人的综合成绩,并以综合成绩排序确定所要招聘的前两名的人选.