题目内容
【题目】某班数学课外活动小组的同学欲测量公园内一棵树DE的高度,他们在这棵树正前方一楼亭前的台阶上A点处测得树顶端D的仰角为30°,朝着这棵树的方向走到台阶下的点C处测得树顶端D的仰角为60°,已知A点的高度AB为2米,台阶AC的坡度i=1:2,且B,C,E三点在同一条直线上,请根据以上条件求出树DE的高度.(测倾器的高度忽略不计,结果保留根号)
【答案】
【解析】试题分析:
如图,过点A作AF⊥DE于点F,设DF=x,在Rt△ADF中,由∠DAF=30°可得:AF=x;在Rt△ABC中,由AC的坡度为1:2,AB=2得到BC=4;在Rt△CDE中,由∠DCE=60°,DF=x+2可得CE= (x+2);最后由BE=BC+CE=AF建立方程,解方程即可求得x的值,从而可求得树DE的高度.
试题解析:
过点A作AF⊥DE于点F,设DF=x.
在Rt△ADF中,∵∠DAF=30°,tan∠DAF=,
∴AF=x;
∵AC的坡度i=1:2,AB=2
∴BC=4;
∵AB⊥BC,DE⊥CE,AF⊥DE,
∴四边形ABEF为矩形,
∴EF=AB=2,BE=AF,
∴DE=DF+EF=x+2,
∵在Rt△DCE中,tan∠DCE=,∠DCE=60°,
∴CE= (x+2).
∵EB=BC+CE=4+ (x+2),
∴ 4+ (x+2)= x,
∴解得:x=,
∴DE=DF+EF=.
即树的高度DE长为:()米..
练习册系列答案
相关题目