题目内容
【题目】如图,在△ABC中,BD⊥AC,AB=6,AC=5 ,∠A=30°.
①求BD和AD的长;
②求tanC的值.
【答案】解:①∵BD⊥AC,
∴∠ADB=90°,
在Rt△ADB中,AB=6,∠A=30°,
∴BD= AB=3,
∴AD= BD=3 ;
②CD=AC﹣AD=5 ﹣3 =2 ,
在Rt△BCD中,tan∠C= = =
【解析】①由BD⊥AC得到∠ADB=90°,在Rt△ADB中,根据含30度的直角三角形三边的关系先得到BD= AB=3,再得到AD= BD=3 ;②先计算出CD=2 ,然后在Rt△BCD中,利用正切的定义求解.
【考点精析】解答此题的关键在于理解勾股定理的概念的相关知识,掌握直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2,以及对解直角三角形的理解,了解解直角三角形的依据:①边的关系a2+b2=c2;②角的关系:A+B=90°;③边角关系:三角函数的定义.(注意:尽量避免使用中间数据和除法).
练习册系列答案
相关题目
【题目】某天早上,一辆交通巡逻车从A地出发,在东西向的马路上巡视,中午到达B地,如果规定向东行驶为正,向西行驶为负,行驶纪录如下:(单位:km)
第一次 | 第二次 | 第三次 | 第四次 | 第五次 | 第六次 | 第七次 |
+15 | -8 | +6 | +12 | -4 | +5 | -10 |
(1)B地在A地哪个方向,与A地相距多少千米?
(2)巡逻车在巡逻过程中,离开A地最远是多少千米?
(3)若每km耗油0.1升,问共耗油多少升?