题目内容
如图1,正方形ABCD,△AMN是等腰Rt△,∠AMN=90°,当Rt△AMN绕点A旋转时,边AM、AN分别与BC(或延长线图3)、CD(或延长线图3)相交于点E、F,连接EF,小明与小红在研究图1时,发现有这么一个结论:EF=DF+BE;为了解决这个问题,小明与小红,经过讨论,采取了以下方案:延长CB到G,使BG=DF,连接AG,得到图2,请你根据小明、小红的思路,结合图2,解决下列问题:
(1)证明:①△ADF≌△ABG; ②EF=DF+BE;
(2)根据图(3),①结论EF=DF+BE是否成立,如不成立,写出三线段EF、DF、BE的数量关系并证明.②若CE=6,DF=2,求正方形ABCD的边长.

(1)证明:①△ADF≌△ABG; ②EF=DF+BE;
(2)根据图(3),①结论EF=DF+BE是否成立,如不成立,写出三线段EF、DF、BE的数量关系并证明.②若CE=6,DF=2,求正方形ABCD的边长.
分析:(1)①根据正方形性质得出AD=AB,∠D=∠ABG,根据全等三角形的判定推出即可;②根据全等三角形的性质得出AF=AG,∠DAF=∠BAG,求出∠FAE=∠GAE,证△FAE≌△GAE,推出EF=GE即可;
(2)①EF=BE-DF,理由是:在BC上取BG=DF,连接AG,证△ABG≌△ADF,△FAE≌△EAG即可;②设正方形ABCD的边长是x,则BC=CD=x,EF=GE=BC-BG+CE=x+4,在Rt△FCE中,由勾股定理得出方程(x+4)2=(x+2)2+62,求出即可.
(2)①EF=BE-DF,理由是:在BC上取BG=DF,连接AG,证△ABG≌△ADF,△FAE≌△EAG即可;②设正方形ABCD的边长是x,则BC=CD=x,EF=GE=BC-BG+CE=x+4,在Rt△FCE中,由勾股定理得出方程(x+4)2=(x+2)2+62,求出即可.
解答:
(1)①证明:延长CB到G,使BG=DF,连接AG,
∵四边形ABCD是正方形,
∴∠D=∠ABC=∠DAB=∠ABG=90°,AD=AB,
在△ADF和△ABG中
∴△ADF≌△ABG(SAS);
②∵△ADF≌△ABG,
∴AF=AG,∠DAF=∠BAG,
∵△AMN是等腰直角三角形,
∴∠NAM=∠N=45°,
∵∠DAB=90°,
∴∠DAF+∠EAB=90°-45°=45°,
∴∠EAB+∠BAG=45°,
∴∠FAE=∠GAE=45°,
在△FAE和△GAE中
∴△FAE≌△GAE(SAS),
∴EF=EG=BE+BG,
∵BG=DF,
∴EF=DF+BE.
(2)①不成立,三线段EF、DF、BE的数量关系是EF=BE-DF,
证明:在BC上取BG=DF,连接AG,
在△ABG和△ADF中
∴△ABG≌△ADF(SAS),
∴AF=AG,∠DAF=∠BAG,
∵△AMN是等腰直角三角形,
∴∠NAM=∠N=45°,
∴∠FAD+∠DAC=45°,
∴∠DAC+∠BAG=45°,
∵∠DAB=90°,
∴∠GAE=90°-45°=45°=∠FAE,
在△FAE和△GAE中
∴△FAE≌△GAE(SAS),
∴EF=EG=BE-BG,
∵BG=DF,
∴EF=BE-DF.
②解:设正方形ABCD的边长是x,则BC=CD=x,
∵CE=6,DF=BG=2,
∴EF=GE=CG+CE=BC-BG+CE=x-2+6=x+4,
在Rt△FCE中,由勾股定理得:EF2=FC2+CE2,
∴(x+4)2=(x+2)2+62,
解得:x=6,
即正方形ABCD的边长是6.
∵四边形ABCD是正方形,
∴∠D=∠ABC=∠DAB=∠ABG=90°,AD=AB,
在△ADF和△ABG中
|
∴△ADF≌△ABG(SAS);
②∵△ADF≌△ABG,
∴AF=AG,∠DAF=∠BAG,
∵△AMN是等腰直角三角形,
∴∠NAM=∠N=45°,
∵∠DAB=90°,
∴∠DAF+∠EAB=90°-45°=45°,
∴∠EAB+∠BAG=45°,
∴∠FAE=∠GAE=45°,
在△FAE和△GAE中
|
∴△FAE≌△GAE(SAS),
∴EF=EG=BE+BG,
∵BG=DF,
∴EF=DF+BE.
(2)①不成立,三线段EF、DF、BE的数量关系是EF=BE-DF,
在△ABG和△ADF中
|
∴△ABG≌△ADF(SAS),
∴AF=AG,∠DAF=∠BAG,
∵△AMN是等腰直角三角形,
∴∠NAM=∠N=45°,
∴∠FAD+∠DAC=45°,
∴∠DAC+∠BAG=45°,
∵∠DAB=90°,
∴∠GAE=90°-45°=45°=∠FAE,
在△FAE和△GAE中
|
∴△FAE≌△GAE(SAS),
∴EF=EG=BE-BG,
∵BG=DF,
∴EF=BE-DF.
②解:设正方形ABCD的边长是x,则BC=CD=x,
∵CE=6,DF=BG=2,
∴EF=GE=CG+CE=BC-BG+CE=x-2+6=x+4,
在Rt△FCE中,由勾股定理得:EF2=FC2+CE2,
∴(x+4)2=(x+2)2+62,
解得:x=6,
即正方形ABCD的边长是6.
点评:本题考查了全等三角形的性质和判定,正方形的性质,勾股定理的应用,主要考查学生的推理能力,证明过程类似.
练习册系列答案
相关题目