题目内容
【题目】如图,在中,点、分别在边、上,与交于点,若平分,.
(1)求证:;
(2)若,交边的延长线于点,求证:.
【答案】(1)证明见解析;(2)证明见解析.
【解析】
(1)先证△BAE∽△CAF,推出∠AEB=∠AFC,由等角的补角相等可得出结论;
(2)先后证明∠DCB=∠CEG,∠G=∠ACF=∠B,推出△BDC∽△GCE,由相似三角形的性质可得出结论.
(1)证明:∵ABAF=ACAE,
∴,
∵AE平分∠BAC,
∴∠BAE=∠CAE,
∴△BAE∽△CAF,
∴∠AEB=∠AFC,
∴180°∠AEB=180°∠AFC,
∴∠AEC=∠AFD;
(2)证明:∵∠CFE=∠AFD=∠CEF,
∴CE=CF,
∵DC∥EG,
∴∠DCB=∠CEG,∠G=∠ACF=∠B,
∴△BDC∽△GCE,
∴,
∴CDCG=FCBD.
练习册系列答案
相关题目
【题目】某食品厂生产一种半成品食材,成本为2元/千克,每天的产量P(百千克)与销售价格x(元/千克)满足函数关系式p=x+8.从市场反馈的信息发现,该食材每天的市场需求量q(百千克)与销售价格x(元/千克)满足一次函数关系,部分数据如表:
销售价格x(元/千克) | 2 | 4 | …… | 10 |
市场需求量q(百千克) | 12 | 10 | …… | 4 |
已知按物价部门规定销售价格x不低于2元/千克且不高于10元/千克,
(1)直接写出q与x的函数关系式,并注明自变量x的取值范围;
(2)当每天的产量小于或等于市场需求量时,这种食材能全部售出;当每天的产量大于市场需求量时,只能售出市场需求的量,而剩余的食材由于保质期短作废弃处理;
①当每天的食材能全部售出时,求x的取值范围;
②求厂家每天获得的利润y(百元)与销售价格x的函数关系式;
(3)在(2)的条件下,当x为多少时,y有最大值,并求出最大利润.