题目内容
【题目】如图,在△ABE中,∠A=105°,AE的垂直平分线MN交BE于点C,且AB+BC=BE,则∠B的度数是( )
A. 45° B. 60° C. 50° D. 55°
【答案】C
【解析】
试题利用线段垂直平分线的性质知∠E=∠EAC AC=CE,等量代换得AB=CE=AC,利用三角形的外角性质得∠B=∠ACB=2∠E,从而根据三角形的内角和计算.
解:连接AC
∵CM⊥AE
∴∠E=∠EAC AC=CE(线段垂直平分线的性质)
∵AB+BC=BE(已知)
BC+CE=BE
∴AB=CE=AC(等量代换)
∴∠B=∠ACB=2∠E(外角性质)
∵∠B+∠E+105°=180°(三角形内角和)
∴∠B+∠B+105°=180°
解得∠B=50°.
故选C.
练习册系列答案
相关题目