题目内容

【题目】如图,等腰的一个锐角顶点上的一个动点,,腰与斜边分别交于点,分别过点的切线交于点,且点恰好是腰上的点,连接,若的半径为4,则的最大值为:(

A.B.C.6D.8

【答案】A

【解析】

先由等腰三角形的性质、切线的性质及圆的半径相等判定四边形ODFE是正方形,再得出点C在以EF为直径的半圆上运动,则当OC经过半圆圆心G时,OC的值最大,用勾股定理计算出OG的长度,再加上CG的长度即可.

解:∵等腰RtABC中,∠ACB=90°,

∴∠A=B=45°,

∴∠DOE=2A=90°,

∵分别过点DE作⊙O的切线,

ODDFOEEF

∴四边形ODFE是矩形,

OD=OE=4

∴四边形ODFE是正方形,

EF=4

∵点F恰好是腰BC上的点,

∴∠ECF=90°

∴点C在以EF为直径的半圆上运动,

∴设EF的中点为G,则EG=FG=CG=EF=2,且当OC经过半圆圆心G时,OC的值最大,此时,在RtOEG中,OG=

OC=OG+CG=.

故答案为:A.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网