题目内容
【题目】如图是小强洗漱时的侧面示意图,洗漱台(矩形 )靠墙摆放,高 ,宽 ,小强身高 ,下半身 ,洗漱时下半身与地面成 ( ),身体前倾成 ( ),脚与洗漱台距离 (点 , , , 在同一直线上).
(1)此时小强头部 点与地面 相距多少?
(2)小强希望他的头部 恰好在洗漱盆 的中点 的正上方,他应向前或后退多少?
( , , ,结果精确到 )
【答案】
(1)
解:过点F作FN⊥DK于点N,过点E作EM⊥FN于点M,
∵EF+FG=166,FG=100,∴EF=66,
∵∠FGK=80°,∴FN=100sin80°≈98,
又∵∠EFG=125°,∴∠EFM=180°-125°-10°=45°,
∴FM=66cos45°=33≈46.53,
∴MN=FN+FM≈144.5.
∴他头部E点与地面DK相距约144.5cm。
(2)
解:过点E作EP⊥AB于点P,延长OB交MN于点H。
∵AB=48,O为AB的中点,
∴AO=BO=24,
∵EM=66sin45°≈46.53,即PH≈46.53
GN=100cos80°≈1,8,CG=15,
∴OH=24+15+18==57
OP=OH-PH=57-46.53=10.47≈10.5,
∴他应向前10.5cm。
【解析】(1)过点F作FN⊥DK于点N,过点E作EM⊥FN于点M,他头部E点与地面DK的距离即为MN,由EF+FG=166,FG=100,则EF=66,由角的正弦值和余弦值即可解答;
(2)过点E作EP⊥AB于点P,延长OB交MN于点H,即求OP=OH-PH,而PH=EM,OH=OB+BH=OB+CG+GN,在Rt△EMF求出EM,在Rt△FGN求出GN即可.
【考点精析】认真审题,首先需要了解解直角三角形(解直角三角形的依据:①边的关系a2+b2=c2;②角的关系:A+B=90°;③边角关系:三角函数的定义.(注意:尽量避免使用中间数据和除法)).