题目内容

【题目】如图,在锐角三角形ABC中,点D,E分别在边AC,AB上,AG⊥BC于点G,AF⊥DE于点F,∠EAF=∠GAC.

(1)求证:△ADE∽△ABC;
(2)若AD=3,AB=5,求 的值.

【答案】
(1)

证明:∵AG⊥BC,AF⊥DE,

∴∠AFE=∠AGC=90°,

∵∠EAF=∠GAC,

∴∠AED=∠ACB,

∵∠EAD=∠BAC,

∴△ADE∽△ABC


(2)

解:由(1)可知:△ADE∽△ABC,

=

由(1)可知:∠AFE=∠AGC=90°,

∴∠EAF=∠GAC,

∴△EAF∽△CAG,

=


【解析】(1)由于AG⊥BC,AF⊥DE,所以∠AFE=∠AGC=90°,从而可证明∠AED=∠ACB,进而可证明△ADE∽△ABC;
(2)△ADE∽△ABC, ,又易证△EAF∽△CAG,所以 ,从而可知
【考点精析】根据题目的已知条件,利用相似三角形的判定与性质的相关知识可以得到问题的答案,需要掌握相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比;相似三角形周长的比等于相似比;相似三角形面积的比等于相似比的平方.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网