题目内容
【题目】相传古印度一座梵塔圣殿中,铸有一片巨大的黄铜板,之上树立了三米高的宝石柱,其中一根宝石柱上插有中心有孔的64枚大小两两相异的一寸厚的金盘,小盘压着较大的盘子,如图,把这些金盘全部一个一个地从1柱移到3柱上去,移动过程不许以大盘压小盘,不得把盘子放到柱子之外.移动之日,喜马拉雅山将变成一座金山.
设h(n)是把n个盘子从1柱移到3柱过程中移动盘子之最少次数
n=1时,h(1)=1;
n=2时,小盘→2柱,大盘→3柱,小盘从2柱→3柱,完成.即h(2)=3;
n=3时,小盘→3柱,中盘→2柱,小盘从3柱→2柱.[即用h(2)种方法把中、小两盘移到2柱,大盘3柱;再用h(2)种方法把中、小两盘从2柱3柱,完成;
我们没有时间去移64个盘子,但你可由以上移动过程的规律,计算n=6时,h(6)=( )
A.11
B.31
C.63
D.127
【答案】C
【解析】解:根据题意,n=1时,h(1)=1,
n=2时,小盘→2柱,大盘→3柱,小盘从2柱→3柱,完成,即h(2)=3=22﹣1;
n=3时,小盘→3柱,中盘→2柱,小盘从3柱→2柱,[用h(2)种方法把中、小两盘移到2柱,大盘3柱;再用h(2)种方法把中、小两盘从2柱3柱,完成],
h(3)=h(2)+h(2)+1=3×2+1=7=23﹣1,
h(4)=h(3)+h(3)+1=7×2+1=15=24﹣1,
…
以此类推,h(n)=h(n﹣1)+h(n﹣1)+1=2n﹣1,
∴h(6)=26﹣1=64﹣1=63.
故选C.
练习册系列答案
相关题目