题目内容

【题目】若抛物线y=ax2+bx+c如图所示,下列四个结论: ①abc<0;②b﹣2a<0;③a﹣b+c<0;④b2﹣4ac>0.
其中正确结论的个数是(

A.1
B.2
C.3
D.4

【答案】B
【解析】解:∵抛物线开口向下, ∴a<0,
∵抛物线的对称轴在y轴左侧,
∴b<0,
∵抛物线与y轴的交点在x轴下方,
∴c<0,
∴abc<0,所以①正确;
∵﹣1<﹣ <0,a<0,
∴2a<b,所以②错误;
∵x=﹣1时,y<0,
∴a﹣b+c<0,所以③正确;
∵抛物线与x轴没有交点,
∴b2﹣4ac<0,所以错误.
故选B.
用抛物线开口方向、抛物线的对称轴位置和抛物线与y轴的交点位置可判断a、b、c的符号,则可①进行判断;利用对称轴的位置得到﹣1<﹣ <0,a<0,然后根据不等式的性质可对②进行判断;利用自变量为﹣1时对应的函数值为负数可对③进行判断;根据抛物线与x轴的交点个数可对④进行判断.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网