题目内容

【题目】已知在四边形ABCD中,∠ABC+ADC=180°,AB=BC.

(1)如图1,若∠BAD=90°,AD=2,求CD的长度;

(2)如图2,点P、Q分别在线段AD、DC上,满足PQ=AP+CQ,求证:∠PBQ=90°ADC;

(3)如图3,若点Q运动到DC的延长线上,点P也运动到DA的延长线上时,仍然满足PQ=AP+CQ,则(2)中的结论是否成立?若成立,请给出证明过程,若不成立,请写出∠PBQ与∠ADC的数量关系,并给出证明过程.

【答案】(1)CD=2;(2)证明见解析;(3)(2)中结论不成立,应该是:,理由见解析.

【解析】

(1)如图1,利用HL证得两个直角三角形全等:Rt△BAD≌Rt△BCD,则其对应边相等:AD=DC=2;
(2)如图2,延长DC,在上面找一点K,使得CK=AP,连接BK,通过证△BPA≌△BCK(SAS)得到:∠1=∠2,BP=BK.然后由全等三角形△PBQ≌△BKQ的对应角相等求得∠PBQ=∠ABC,结合已知条件“∠ABC+∠ADC=180°”可以推知∠PBQ=90°-ADC
(3)(2)中结论不成立,应该是:∠PBQ=90°+ADC
如图3,在CD延长线上找一点K,使得KC=AP,连接BK,构建全等三角形:△BPA≌△BCK(SAS),由该全等三角形的性质和全等三角形的判定定理SSS证得:△PBQ≌△BKQ,则其对应角相等:∠PBQ=∠KBQ,结合四边形的内角和是360度可以推得:∠PBQ=90°+ADC

(1)

RtBADRtBCD中,

RtBADRtBCD(HL)

AD=DC=2 DC=2

(2)如图,延长DC,在上面找一点K,使得CK=AP,连接BK

BPABCK

∴△BPA≌△BCK(SAS)

,BP=BK

PQ=AP+CQ

PQ=QK

PBQBKQ

∴△PBQ≌△BKQ(SSS)

(3)(2)中结论不成立,应该是:

CD延长线上找一点K,使得KC=AP,连接BK

在△BPA和△BCK

∴△BPA≌△BCK(SAS)

,BP=BK

PQ=AP+CQ

PQ=QK

在△PBQ和△BKQ

∴△PBQ≌△BKQ(SSS)

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网