题目内容

【题目】如图,△PQR是⊙O的内接正三角形,四边形ABCD是⊙O的内接正方形,BC∥QR,则∠AOQ=( )

A.60°
B.65°
C.72°
D.75°

【答案】D
【解析】解:连接OD,AR,

∵△PQR是⊙O的内接正三角形,

∴∠PRQ=60°,

∴∠POQ=2×∠PRQ=120°,

∵四边形ABCD是⊙O的内接正方形,

∴△AOD为等腰直角三角形,

∴∠AOD=90°,

∵BC∥RQ,AD∥BC,

∴AD∥QR,

∴∠ARQ=∠DAR,

∴弧AQ=弧DR,

∵△PQR是等边三角形,

∴PQ=PR,

∴弧PQ=弧PR,

∴弧AP=弧PD,

∴∠AOP= ∠AOD=45°,

所以∠AOQ=∠POQ﹣∠AOP=120°﹣45°=75°.

所以答案是:D.

【考点精析】解答此题的关键在于理解正多边形和圆的相关知识,掌握圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角;圆的外切四边形的两组对边的和相等.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网