题目内容
【题目】如图,在矩形ABCD中,,,把△EAD沿AE折叠,使点D恰好落在AB边上的处,再将绕点E顺时针旋转,得到,使得恰好经过的中点F.交AB于点G,连接有如下结论:①的长度是;②弧的长度是;③;④.上述结论中,所有正确的序号是________.
【答案】①②④
【解析】
①先根据图形翻折变换的性质以及勾股定理得出的长,再根据勾股定理求出EF的长,即可求解;
②利用特殊角的三角函数求得,从而求得,根据弧长公式即可求解;
③由于不是等边三角形,得出,从而说明和不是全等三角形;
④先利用“HL”证得,求得,再求得,从而推出.
①在矩形ABCD中,,
∵△ADE翻折后与△AD′E重合,
∴AD′=AD,D′E=DE,,
∴四边形ADED′是正方形,
∴AD′=AD=D′E=DE=,
∴AE=,
将绕点E顺时针旋转,得到,
∴,==,,
∵点F是的中点,
∴,
∴,
∴,故①正确;
②由①得,
在中,,
,
∴,
∴,
∴弧的长度是,故②正确;
③在中,,,
∴不是等边三角形,
∴,
∴和不是全等三角形,故③错误;
④在和中,,公共,
∴(HL),
∴,
∴,
在中,,,
∴,
∴,
又,
∴,故④正确;
综上,①②④正确,
故答案为:①②④.
【题目】如图1,在平面直角坐标系中,点A的坐标是,在x轴上任取一点M.连接AM,分别以点A和点M为圆心,大于的长为半径作弧,两弧相交于G,H两点,作直线GH,过点M作x轴的垂线l交直线GH于点P.根据以上操作,完成下列问题.
探究:
(1)线段PA与PM的数量关系为________,其理由为:________________.
(2)在x轴上多次改变点M的位置,按上述作图方法得到相应点P的坐标,并完成下列表格:
M的坐标 | … | … | ||||
P的坐标 | … | … |
猜想:
(3)请根据上述表格中P点的坐标,把这些点用平滑的曲线在图2中连接起来;观察画出的曲线L,猜想曲线L的形状是________.
验证:
(4)设点P的坐标是,根据图1中线段PA与PM的关系,求出y关于x的函数解析式.
应用:
(5)如图3,点,,求点D的纵坐标的取值范围.