题目内容
【题目】如图,在中,,平分,为线段上的一个动点,交直线于点.
(1)若,求的度数;
(2)当点在线段上运动时,求证:.
【答案】(1)25°;(2)见解析
【解析】
(1)中,首先根据三角形的内角和定理求得∠BAC的度数,再根据角平分线的定义求得∠DAC的度数,从而根据三角形的内角和定理即可求出∠ADC的度数,进一步求得∠E的度数;
(2)中,根据第(1)小题的思路即可推导这些角之间的关系.
解:(1)∵∠B=35°,∠ACB=85°,∴∠BAC=60°.
∵AD平分∠BAC,∴∠DAC=30°.
∴∠ADC=65°.
又∵∠DPE=90°,∴∠E=25°
(2)证明:∵∠B+∠BAC+∠ACB=180°,
∴∠BAC=180°-(∠B+∠ACB).
∵AD平分∠BAC,
∴∠BAD=∠BAC=90°- (∠B+∠ACB).
∴∠ADC=∠B+∠BAD=90°- (∠ACB-∠B).
∵PE⊥AD,∴∠DPE=90°.
∴∠ADC+∠E=90°.
∴∠E=90°-∠ADC,
即∠E= (∠ACB-∠B).
练习册系列答案
相关题目