题目内容

【题目】△ABC中,AB=AC,D是线段BC的延长线上一点,以AD为一边在AD的右侧作△ADE,使AE=AD,∠DAE=∠BAC,连接CE.

(1)如图1,点D在线段BC的延长线上移动,若∠BAC=30°,则∠DCE=   

(2)设∠BAC=α,∠DCE=β:

如图1,当点D在线段BC的延长线上移动时,αβ之间有什么数量关系?请说明理由;

当点D在直线BC上(不与B、C重合)移动时,αβ之间有什么数量关系?请直接写出你的结论.

【答案】(1)30°;(2)①α=β,理由见解析;②当D在线段BC上时,α+β=180°,当点D在线段BC延长线或反向延长线上时,α=β.

【解析】试题分析:(1)证BAD≌△CAE,推出B=∠ACE,根据三角形外角性质求出即可;

(2)①BAD≌△CAE,推出B=∠ACE,根据三角形外角性质求出即可;

②α+β=180°α=β,根据三角形外角性质求出即可.

试题解析:(1)解:∵∠DAE=∠BAC,∴∠DAE+∠CAD=∠BAC+∠CAD,∴∠BAD=∠CAE

BADCAE,∵AB=AC,∠BAD=∠CAEAD=AE,∴△BAD≌△CAE(SAS),

∴∠B=∠ACE

∵∠ACD=∠B+∠BAC=∠ACE+∠DCE,∴∠BAC=∠DCE

∵∠BAC=30°,∴∠DCE=30°.

故答案为:30°;

(2)解:当点D在线段BC的延长线上移动时,αβ之间的数量关系是α=β.理由是:

∵∠DAE=∠BAC,∴∠DAE+∠CAD=∠BAC+∠CAD,∴∠BAD=∠CAE

BADCAE,∵AB=AC,∠BAD=∠CAEAD=AE,∴△BAD≌△CAE(SAS),

∴∠B=∠ACE

∵∠ACD=∠B+∠BAC=∠ACE+∠DCE,∴∠BAC=∠DCE

∵∠BAC=α,∠DCE=β,∴α=β;

(3)解:当D在线段BC上时,α+β=180°,当点D在线段BC延长线或反向延长线上时,α=β.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网