题目内容
【题目】在△ABC中,AB=AC,D是线段BC的延长线上一点,以AD为一边在AD的右侧作△ADE,使AE=AD,∠DAE=∠BAC,连接CE.
(1)如图1,点D在线段BC的延长线上移动,若∠BAC=30°,则∠DCE= .
(2)设∠BAC=α,∠DCE=β:
①如图1,当点D在线段BC的延长线上移动时,α与β之间有什么数量关系?请说明理由;
②当点D在直线BC上(不与B、C重合)移动时,α与β之间有什么数量关系?请直接写出你的结论.
【答案】(1)30°;(2)①α=β,理由见解析;②当D在线段BC上时,α+β=180°,当点D在线段BC延长线或反向延长线上时,α=β.
【解析】试题分析:(1)证△BAD≌△CAE,推出∠B=∠ACE,根据三角形外角性质求出即可;
(2)①证△BAD≌△CAE,推出∠B=∠ACE,根据三角形外角性质求出即可;
②α+β=180°或α=β,根据三角形外角性质求出即可.
试题解析:(1)解:∵∠DAE=∠BAC,∴∠DAE+∠CAD=∠BAC+∠CAD,∴∠BAD=∠CAE.
在△BAD和△CAE中,∵AB=AC,∠BAD=∠CAE,AD=AE,∴△BAD≌△CAE(SAS),
∴∠B=∠ACE.
∵∠ACD=∠B+∠BAC=∠ACE+∠DCE,∴∠BAC=∠DCE.
∵∠BAC=30°,∴∠DCE=30°.
故答案为:30°;
(2)解:当点D在线段BC的延长线上移动时,α与β之间的数量关系是α=β.理由是:
∵∠DAE=∠BAC,∴∠DAE+∠CAD=∠BAC+∠CAD,∴∠BAD=∠CAE.
在△BAD和△CAE中,∵AB=AC,∠BAD=∠CAE,AD=AE,∴△BAD≌△CAE(SAS),
∴∠B=∠ACE.
∵∠ACD=∠B+∠BAC=∠ACE+∠DCE,∴∠BAC=∠DCE.
∵∠BAC=α,∠DCE=β,∴α=β;
(3)解:当D在线段BC上时,α+β=180°,当点D在线段BC延长线或反向延长线上时,α=β.