题目内容

【题目】如图,已知正方形ABCD,点E在CB的延长线上,联结AE、DE,DE与边AB交于点F,FG∥BE且与AE交于点G.
(1)求证:GF=BF.
(2)在BC边上取点M,使得BM=BE,联结AM交DE于点O.求证:FOED=ODEF.

【答案】
(1)证明:∵四边形ABCD是正方形,

∴AD∥BC,AB∥CD,AD=CD,

∵GF∥BE,

∴GF∥BC,

∴GF∥AD,

∵AB∥CD,

∵AD=CD,

∴GF=BF;


(2)证明:延长GF交AM于H,

∵GF∥BC,

∴FH∥BC,

∵BM=BE,

∴GF=FH,

∵GF∥AD,

∴FOED=ODEF.


【解析】(1)根据已知条件可得到GF∥AD,则有 ,由BF∥CD可得到 ,又因为AD=CD,可得到GF=FB;(2)延长GF交AM于H,根据平行线分线段成比例定理得到 ,由于BM=BE,得到GF=FH,由GF∥AD,得到 ,等量代换得到 ,即 ,于是得到结论.
【考点精析】本题主要考查了正方形的性质和相似三角形的判定与性质的相关知识点,需要掌握正方形四个角都是直角,四条边都相等;正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角;正方形的一条对角线把正方形分成两个全等的等腰直角三角形;正方形的对角线与边的夹角是45o;正方形的两条对角线把这个正方形分成四个全等的等腰直角三角形;相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比;相似三角形周长的比等于相似比;相似三角形面积的比等于相似比的平方才能正确解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网