题目内容
【题目】如图1、2、3分别表示甲、乙、丙三人由A地到B地的路线图,已知
甲的路线为:A→C→B;
乙的路线为:A→D→E→F→B,其中E为AB的中点;
丙的路线为:A→I→J→K→B,其中J在AB上,且AJ>JB.
若符号[→]表示[直线前进],则根据图1、图2、图3的数据,判断三人行进路线长度的大小关系为( )
A. 甲=乙=丙 B. 甲<乙<丙 C. 乙<丙<甲 D. 丙<乙<甲
【答案】A
【解析】分析:由角的度数可以知道2、3中的两个三角形的对应边都是平行的,所以图2,图3中的三角形都和图1中的三角形相似.而且图2三角形全等,图3三角形相似.
详解:根据以上分析:所以图2可得AE=BE,AD=EF,DE=BE.
∵AE=BE=AB,∴AD=EF=AC,DE=BE=BC,∴甲=乙.
图3与图1中,三个三角形相似,所以 ====.
∵AJ+BJ=AB,∴AI+JK=AC,IJ+BK=BC,
∴甲=丙.∴甲=乙=丙.
故选A.
练习册系列答案
相关题目
【题目】某石化乙烯厂某车间生产甲、乙两种塑料的相关信息如下表,请你解答下列问题:
出厂价 | 成本价 | 排污处理费 | |
甲种塑料 | 2100(元/吨) | 800(元/吨) | 200(元/吨) |
乙种塑料 | 2400(元/吨) | 1100(元/吨) | 100(元/吨) 另每月还需支付设备管理、维护费20000元 |
(1)设该车间每月生产甲、乙两种塑料各x吨,利润分别为y1元和y2元,分别求出y1和y2与x的函数关系式(注:利润=总收入-总支出);
(2)已知该车间每月生产甲、乙两种塑料均不超过400吨,若某月要生产甲、乙两种塑料共700吨,求该月生产甲、乙塑料各多少吨时,获得的总利润最大?最大利润是多少?