题目内容
【题目】C点的坐标为(4,4),A为y轴负半轴上一动点,连CA,CB⊥CA交x轴于B.
(1)求OB﹣OA的值;
(2)E在x轴正半轴上,D在y轴负半轴上,∠DCE=45°,转动∠DCE,求线段BE、DE和AD之间的数量关系.
【答案】(1)8;(2)①当D在OA的延长线上时,DE=AD+BE;②当D在边OA上时,DE=BE﹣AD
【解析】
(1)如图1,作辅助线,证明△CQA≌△CPB(AAS),可得PB=AQ,根据线段的和与差可得结论;
(2)存在两种情况:
①当D在OA的延长线上时,如图2,作辅助线,证明△CAD≌△CBM(ASA)和△DCE≌△MCE(SAS),得DE=EM,AD=BM,相加可得结论.
②当D在边OA上时,如图3,同理可得;DE=BE-AD.
解:(1)如图1,过C作CQ⊥y轴于Q,过C作CP⊥OB于P,
∵C(4,4),
∴CQ=CP=OQ=OP=4,
∵AC⊥BC,
∴∠ACB=∠ACP+∠BCP=∠BCP+∠PBC=90°,
∴∠ACP=∠PBC,
∵OA∥PC,
∴∠CAQ=∠ACP=∠PBC,
∵∠CPB=∠CQA=90°,
∴△CQA≌△CPB(AAS),
∴PB=AQ,
∴OB﹣OA=OP+PB﹣OA=OP+AQ﹣OA=OP+OQ=8;
(2)分两种情况:
①当D在OA的延长线上时,DE=AD+BE,理由是:
如图2,过C作CM⊥CD,交x轴于M,
∵AC⊥BC,
∴∠ACD=∠BCM,
由(1)知:△CQA≌△CPB,
∴AC=BC,∠CAQ=∠PBC,
∴∠DAC=∠MBC,
∴△CAD≌△CBM(ASA),
∴BM=AD,CD=CM,
∵∠ACB=90°,∠DCE=45°,
∴∠ACD+∠BCE=45°=∠BCM+∠BCE=∠ECM,
∵CE=CE,
∴△DCE≌△MCE(SAS),
∴DE=EM,
∴EM=BE+BM=BE+AD=DE,
即DE=AD+BE.
②当D在边OA上时,DE=BE﹣AD,理由是:
如图3,过C作CM⊥CD,交x轴于M,
同理得△CAD≌△CBM(ASA),
∴BM=AD,CD=CM,
同理得:△DCE≌△MCE(SAS),
∴DE=EM,
∴EM=BE﹣BM=BE﹣AD=DE,
即DE=BE﹣AD.