题目内容
【题目】如图,直角梯形ABCD中,AB∥CD,∠DAB=90°,且∠ABC=60°,AB=BC,△ACD的外接圆⊙O交BC于E点,连接DE并延长,交AC于P点,交AB延长线于F.
(1)求证:CF=DB;
(2)当AD= 时,试求E点到CF的距离.
【答案】
(1)证明:连结AE,如图,
∵∠ABC=60°,AB=BC,
∴△ABC为等边三角形,
∵AB∥CD,∠DAB=90°,
∴∠ADC=∠DAB=90°,
∴AC为⊙O的直径,
∴∠AEC=90°,即AE⊥BC,
∴BE=CE,
CD∥BF,
∴∠DCE=∠FBE,
在△DCE和△FBE中,
,
∴△DCE≌△FBE(ASA),
∴DE=FE,
∴四边形BDCF为平行四边形,
∴CF=DB
(2)解:作EH⊥CF于H,如图,
∵△ABC为等边三角形,
∴∠BAC=60°,
∴∠DAC=30°,
在Rt△ADC中,AD= ,
∴DC= AD=1,AC=2CD=2,
∴AB=AC=2,BF=CD=1,
∴AF=3,
在Rt△ABD中,BD= = ,
在Rt△ADF中,DF= =2 ,
∴CF=BD= ,EF= DF= ,
∵AE⊥BC,
∴∠CAE=∠BAE=30°,
∴∠EDC=∠CAE=30°,
而∠DCA=∠BAC=60°,
∴∠DPC=90°,
在Rt△DPC中,DC=1,∠CDP=30°,
∴PC= DC= ,
∵∠HFE=∠PFC,
∴Rt△FHE∽Rt△FPC,
∴ ,即 = ,
∴EH= ,
即E点到CF的距离为 .
【解析】(1)连结AE,由∠ABC=60°,AB=BC可判断△ABC为等边三角形,由AB∥CD,∠DAB=90°得∠ADC=∠DAB=90°,则根据圆周角定理可得到AC为⊙O的直径,则∠AEC=90°,即AE⊥BC,根据等边三角形的性质得BE=CE,再证明△DCE≌△FBE,得到DE=FE,于是可判断四边形BDCF为平行四边形,根据平行四边形的性质得CF=DB;(2)作EH⊥CF于H,由△ABC为等边三角形得∠BAC=60°,则∠DAC=30°,在Rt△ADC中,根据含30度的直角三角形三边的关系得DC= AD=1,AC=2CD=2,则AB=AC=2,BF=CD=1,AF=3,然后利用勾股定理计算出BD= ,DF=2 ,所以CF=BD= ,EF= DF= ,接着根据等边三角形的性质由AE⊥BC得∠CAE=∠BAE=30°,根据圆周角定理得∠EDC=∠CAE=30°,而∠DCA=∠BAC=60°,得到∠DPC=90°,在Rt△DPC中,根据含30度的直角三角形三边的关系得PC= DC= ,再证明Rt△FHE∽Rt△FPC,利用相似比可计算出EH.