题目内容
【题目】如图,在平面直角坐标系xOy中,将抛物线y=﹣x2+bx+c与直线y=﹣x+1相交于点A(0,1)和点B(3,﹣2),交x轴于点C,顶点为点F,点D是该抛物线上一点.
(1)求抛物线的函数表达式;
(2)如图1,若点D在直线AB上方的抛物线上,求△DAB的面积最大时点D的坐标;
(3)如图2,若点D在对称轴左侧的抛物线上,且点E(1,t)是射线CF上一点,当以C、B、D为顶点的三角形与△CAE相似时,求所有满足条件的t的值.
【答案】(1)y=﹣x2+2x+1;(2);(3)t=1或t=2或或
【解析】
(1)将点A(0,1)和点B(3,-2)代入抛物物线y=-x2+bx+c中,列出方程组即可解答;
(2)过点D作 DM∥y轴交AB于点M,D(a,-a2+2a+1),则M(a,-a+1),表达出DM,进而表达出△ABD的面积,利用二次函数的性质得出最大值及D点坐标;
(3)由题意可知,∠ACE=∠ACO=45°,则△BCD中必有一个内角为45°,有两种情况:①若∠CBD=45°,得出△BCD是等腰直角三角形,因此△ACE也是等腰直角三角形,再対△ACE进行分类讨i论;②若∠CDB=45,根括圆的性质确定D1的位置,求出D1的坐标,再对△ACE与△CD1B相似分类讨论.
解:(1)将点A(0,1)和点B(3,﹣2)代入抛物物线y=﹣x2+bx+c中
得,
解得
∴y=﹣x2+2x+1;
(2)如图1所示:过点D作 DM∥y轴交AB于点M,
设D(a,﹣a2+2a+1),则M(a,﹣a+1)
.∴DM=﹣a2+2a+1﹣(﹣a+1)=﹣a2+3a
∴
∵,有最大值,
当时,
此时
图1
(3)∵OA=OC,如图2,CF∥y轴,
∴∠ACE=∠ACO=45°,
∴△BCD中必有一个内角为45°,由题意可知,∠BCD不可能为45°,
①若∠CBD=45°,则BD∥x轴,
∴点D与点B于抛物线的対称轴直线x=1対称,设BD与直线=1交于点H,则H(1,﹣2)
B(3,﹣2),D(﹣1,﹣2)
此时△BCD是等腰直角三角形,因此△ACE也是等腰直角三角形,
(i)当∠AEC=90°时,得到AE=CE=1,
∴E(1.1),得到t=
(ii)当∠CAE=90时,得到:AC=AE=,
∴CE=2,∴E(1.2),得到t=2
图2
②若∠CDB=45°,如图3,①中的情况是其中一种,答案同上
以点H为圆心,HB为半径作圆,则点B、C、D都在圆H上,
设圆H与对称左侧的物线交于另一点D1,
则∠CD1B=∠CDB=45°(同弧所对的圆周角相等),即D1也符合题意
设
由HD1=DH=2
解得n1=﹣1(含去),n2=3(舍去),(舍去),
∴,
则,
(i)若△ACE∽△CD1B,
则,
即,
解得,(舍去)
(ii)△ACE∽△BD1C则,
即,
解得,(舍去)
综上所述:所有满足条件的t的值为t=1或t=2或或
图3