题目内容
【题目】若整数a既使得关于x的分式方程有非负数解,又使得关于x的不等式x2-x+a+5≥0恒成立,则符合条件的所有a的个数为( )
A.1B.2C.3D.4
【答案】C
【解析】
解分式方程,由其解有非负数解,以及解不能为增根,列出a的不等式求得a的取值范围;再根据使不等式x2-x+a+5≥0恒成立,即抛物线y=x2-x+a+5的顶点不在x轴下方,满足△=b2-4ac≤0,由此列出a的不等式求得a的又一取值范围,综上a的取值范围,便可确定整数a的值,问题便可解决.
解得,x= ,
∵整分式方程有非负数解,
∴≥0,且x-1=-1≠0
∴a≤-1且a≠-4,
∵又使得关于x的不等式x2-x+a+5≥0恒成立,
∴二次函数y=x2-x+a+5的顶点不在x轴下方,
∴△=1-4(a+5)≤0,
解得,a≥4 ,
综上,4≤a≤1且a≠-4,
∵a为整数,
∴a=-3或-2或-1,
故选:C.
【题目】为弘扬传统文化,某校开展了“传承经典文化,阅读经典名著”活动.为了解七、八年级学生(七、八年级各有600名学生)的阅读效果,该校举行了经典文化知识竞赛.现从两个年级各随机抽取20名学生的竞赛成绩(百分制)进行分析,过程如下:
收集数据:
七年级:79,85,73,80,75,76,87,70,75,94,75,79,81,71,75,80,86,59,83,77.
八年级:92,74,87,82,72,81,94,83,77,83,80,81,71,81,72,77,82,80,70,41.
整理数据:
七年级 | 0 | 1 | 0 | a | 7 | 1 |
八年级 | 1 | 0 | 0 | 7 | b | 2 |
分析数据:
平均数 | 众数 | 中位数 | |
七年级 | 78 | 75 | |
八年级 | 78 | 80.5 |
应用数据:
(1)由上表填空:a= ,b= ,c= ,d= .
(2)估计该校七、八两个年级学生在本次竞赛中成绩在90分以上的共有多少人?
(3)你认为哪个年级的学生对经典文化知识掌握的总体水平较好,请说明理由.