题目内容
【题目】如图,把菱形ABCD沿AH折叠,B落在BC上的点E处,若∠BAE=40°,则∠EDC的大小为_____.
【答案】15°
【解析】
根据翻折变换的性质可得AB=AE,然后根据等腰三角形两底角相等求出∠B=∠AEB=70°,根据菱形的四条边都相等可得AB=AD,菱形的对角相等求出∠ADC,再求出∠DAE,然后根据等腰三角形两底角相等求出∠ADE,然后根据∠EDC=∠ADC﹣∠ADE计算即可得解.
∵菱形ABCD沿AH折叠,B落在BC边上的点E处,
∴AB=AE,
∵∠BAE=40°,
∴∠B=∠AEB=(180°﹣40°)=70°,
在菱形ABCD中,AB=AD,∠ADC=∠B=70°,
AD∥BC,
∴∠DAE=∠AEB=70°,
∵AB=AE,AB=AD,
∴AE=AD,
∴∠ADE=(180°﹣∠DAE)=(180°﹣70°)=55°,
∴∠EDC=∠ADC﹣∠ADE=70°﹣55°=15°.
故答案为:15°.
【题目】如图,A,B,C为⊙O上的定点.连接AB,AC,M为AB上的一个动点,连接CM,将射线MC绕点M顺时针旋转90°,交⊙O于点D,连接BD.若AB=6cm,AC=2cm,记A,M两点间距离为xcm,B,D两点间的距离为ycm.
小东根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.
下面是小东探究的过程,请补充完整:
(1)通过取点、画图、测量,得到了x与y的几组值,如下表,补全表格:
x/cm | 0 | 0.25 | 0.47 | 1 | 2 | 3 | 4 | 5 | 6 |
y/cm | 1.43 | 0.66 | 0 | 1.31 | 2.59 | 2.76 |
| 1.66 | 0 |
(2)在平面直角坐标系xOy中,描出补全后的表中各对对应值为坐标的点,画出该函数的图象;
(3)结合画出的函数图象,解决问题:当BD=AC时,AM的长度约为 cm.