题目内容
【题目】如图,在直角坐标系中,正方形OABC的顶点O与原点重合,顶点A。C分别在x轴、y轴上,反比例函数的图象与正方形的两边AB、BC分别交于点M、N,ND⊥x轴,垂足为D,连接OM、ON、MN。
下列结论:
①△OCN≌△OAM;
②ON=MN;
③四边形DAMN与△MON面积相等;
④若∠MON=450,MN=2,则点C的坐标为。
其中正确的个数是【 】
A.1 B.2 C.3 D.4
【答案】C。
【解析】设正方形OABC的边长为a,
则A(a,0),B(a,a),C(0,a),M(a,),N(,a)。
∵CN=AM= ,OC=OA= a,∠OCN=∠OAM=900,
∴△OCN≌△OAM(SAS)。结论①正确。
根据勾股定理,,,
∴ON和MN不一定相等。结论②错误。
∵,
∴。结论③正确。
如图,过点O作OH⊥MN于点H,则
∵△OCN≌△OAM ,∴ON=OM,∠CON=∠AOM。
∵∠MON=450,MN=2,
∴NH=HM=1,∠CON=∠NOH=∠HOM=∠AOM=22.50。
∴△OCN≌△OHN(ASA)。∴CN=HN=1。
∴。
由得,。
解得:(舍去负值)。
∴点C的坐标为。结论④正确。
∴结论正确的为①③④3个。故选C。
练习册系列答案
相关题目