题目内容
【题目】如图,在平面直角坐标系xOy中,函数y= (x>0)的图象与直线y=x﹣2交于点A(3,m).
(1)求k、m的值;
(2)已知点P(n,n)(n>0),过点P作平行于x轴的直线,交直线y=x﹣2于点M,过点P作平行于y轴的直线,交函数y= (x>0)的图象于点N. ①当n=1时,判断线段PM与PN的数量关系,并说明理由;
②若PN≥PM,结合函数的图象,直接写出n的取值范围.
【答案】
(1)解:将A(3,m)代入y=x﹣2,
∴m=3﹣2=1,
∴A(3,1),
将A(3,1)代入y= ,
∴k=3×1=3
(2)解:①当n=1时,P(1,1),
令y=1,代入y=x﹣2,
x﹣2=1,
∴x=3,
∴M(3,1),
∴PM=2,
令x=1代入y= ,
∴y=3,
∴N(1,3),
∴PM=2
∴PM=PN,
②P(n,n),
点P在直线y=x上,
过点P作平行于x轴的直线,交直线y=x﹣2于点M,
M(n+2,n),
∴PM=2,
∵PN≥PM,
即PN≥2,
∴0<n≤1或n≥3
【解析】(1)将A点代入y=x﹣2中即可求出m的值,然后将A的坐标代入反比例函数中即可求出k的值.(2)①当n=1时,分别求出M、N两点的坐标即可求出PM与PN的关系;②由题意可知:P的坐标为(n,n),由于PN>PM,从而可知PN≥2,根据图象可求出n的范围.
练习册系列答案
相关题目