题目内容

【题目】如图,在平面直角坐标系xOy中,函数y= (x>0)的图象与直线y=x﹣2交于点A(3,m).
(1)求k、m的值;
(2)已知点P(n,n)(n>0),过点P作平行于x轴的直线,交直线y=x﹣2于点M,过点P作平行于y轴的直线,交函数y= (x>0)的图象于点N. ①当n=1时,判断线段PM与PN的数量关系,并说明理由;
②若PN≥PM,结合函数的图象,直接写出n的取值范围.

【答案】
(1)解:将A(3,m)代入y=x﹣2,

∴m=3﹣2=1,

∴A(3,1),

将A(3,1)代入y=

∴k=3×1=3


(2)解:①当n=1时,P(1,1),

令y=1,代入y=x﹣2,

x﹣2=1,

∴x=3,

∴M(3,1),

∴PM=2,

令x=1代入y=

∴y=3,

∴N(1,3),

∴PM=2

∴PM=PN,

②P(n,n),

点P在直线y=x上,

过点P作平行于x轴的直线,交直线y=x﹣2于点M,

M(n+2,n),

∴PM=2,

∵PN≥PM,

即PN≥2,

∴0<n≤1或n≥3


【解析】(1)将A点代入y=x﹣2中即可求出m的值,然后将A的坐标代入反比例函数中即可求出k的值.(2)①当n=1时,分别求出M、N两点的坐标即可求出PM与PN的关系;②由题意可知:P的坐标为(n,n),由于PN>PM,从而可知PN≥2,根据图象可求出n的范围.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网