题目内容
【题目】如图1,△ABC是等腰直角三角形,∠BAC=90°,AB=AC,四边形ADEF是正方形,点B、C分别在边AD、AF上,此时BD=CF,BD⊥CF成立.
(1)当△ABC绕点A逆时针旋转θ(0°<θ<90°)时,如图2,BD=CF成立吗?若成立,请证明;若不成立,请说明理由.
(2)当△ABC绕点A逆时针旋转45°时,如图3,延长DB交CF于点H.
①求证:BD⊥CF.
②当AB=2,AD=3 时,求线段BD的长.
【答案】
(1)
解:如图2中,BD=CF成立.
理由:由旋转得:AC=AB,∠CAF=∠BAD=θ;AF=AD,
在△ABD和△ACF中,
,
∴△ABD≌△ACF,
∴BD=CF
(2)
①证明:如图3中,
由(1)得,△ABD≌△ACF,
∴∠HFN=∠ADN,
∵∠HNF=∠AND,∠AND+∠AND=90°
∴∠HFN+∠HNF=90°
∴∠NHF=90°,
∴HD⊥HF,即BD⊥CF.
②如图4中,连接DF,延长AB,与DF交于点M.
∵四边形ADEF是正方形,
∴∠MDA=45°,
∵∠MAD=45°
∴∠MAD=∠MDA,∠AMD=90°,
∴AM=DM,
∵AD=3 ,
在△MAD中,AM2+DM2=AD2,
∴AM=DM=3,
∴MB=AM﹣AB=3﹣2=1,
在△BMD中,BM2+DM2=BD2,
∴BD= =
【解析】(1)结论:BD=CF.只要证明△ABD≌△ACF即可.(2)①在利用“8字型”证明∠FHN=∠DAN=90°,即可解决问题.②如图4中,连接DF,延长AB,与DF交于点M.在Rt△BDM中,切线BM、DM,再利用勾股定理即可解决问题.
练习册系列答案
相关题目