题目内容
【题目】如图,在平行四边形ABCD中,过对角线BD中点的直线交AD、BC边于F、E.
(1)求证:四边形BEDF是平行四边形;
(2)若∠A=60°,AB=4,BC=6,四边形BEDF是矩形,求该矩形的面积.
【答案】(1)见解析;(2)
【解析】
(1)根据平行四边形ABCD的性质,判定△BOE≌△DOF(ASA),得出四边形BEDF的对角线互相平分,进而得出结论;
(2)根据Rt△ABF的边角关系,求得BF和AF,再根据矩形的性质,求得DF的长,最后计算矩形的面积.
(1)∵四边形ABCD是平行四边形,O是BD中点,
∴BC∥AD,OB=OD,
∴∠OBE=∠ODF,
又∵∠BOE=∠DOF,
∴△BOE≌△DOF(ASA),
∴EO=FO,
∴四边形BEDF是平行四边形;
(2)∵四边形BEDF是矩形
∴∠AFB=90°
又∵∠A=60°,
∴∠ABF=30°,
∴AF=AB=×4=2,
∴Rt△ABF中,BF=2,
又∵AD=BC=6,
∴DF=62=4,
∴矩形BEDF的面积=BF×DF=2×4=8.
练习册系列答案
相关题目