题目内容
【题目】在综合与实践课上,同学们以“一个含的直角三角尺和两条平行线”为背景开展数学活动,如图,已知两直线且和直角三角形,,,.
操作发现:
(1)在如图1中,,求的度数;
(2)如图2,创新小组的同学把直线向上平移,并把的位置改变,发现,说明理由;
实践探究:
(3)缜密小组在创新小组发现结论的基础上,将如图中的图形继续变化得到如图,平分,此时发现与又存在新的数量关系,请直接写出与的数量关系.
【答案】操作发现:(1);(2)见解析;实践探究:(3).
【解析】
(1)如图1,根据平角定义先求出∠3的度数,再根据两直线平行,同位角相等即可得;
(2)如图2,过点B作BD//a,则有∠2+∠ABD=180°,根据已知条件可得∠ABD =60°-∠1,继而可得∠2+60°-∠1=180°,即可求得结论;
(3)∠1=∠2,如图3,过点C作CD//a,由已知可得∠CAM=∠BAC=30°,∠BAM=2∠BAC=60°,根据平行线的性质可得∠BCD=∠2,继而可求得∠1=∠BAM=60°,再根据∠BCD=∠BCA-∠DCA求得∠BCD=60°,即可求得∠1=∠2.
(1)如图1,
∵∠BCA=90°,∠1=46°,
∴∠3=180°-∠BCA-∠1=44°,
∵a//b,
∴∠2=∠3=44°;
(2)理由如下:如图2,过点B作BD//a,
∴∠2+∠ABD=180°,
∵a//b,
∴b//BD,
∴∠1=∠DBC,
∴∠ABD=∠ABC-∠DBC=60°-∠1,
∴∠2+60°-∠1=180°,
∴∠2-∠1=120°;
(3)∠1=∠2,理由如下:如图3,过点C作CD//a,
∵AC平分∠BAM,
∴∠CAM=∠BAC=30°,∠BAM=2∠BAC=2×30°=60°,
∵CD//a,
∴∠BCD=∠2,
∵a//b,
∴∠1=∠BAM=60°,b//CD,
∴∠DCA=∠CAM=30°,
∵∠BCD=∠BCA-∠DCA,
∴∠BCD=90°-30°=60°,
∴∠2=60°,
∴∠1=∠2.
【题目】某公司10名销售员,去年完成的销售额情况如表:
销售额(单位:万元) | 3 | 4 | 5 | 6 | 7 | 8 | 10 |
销售员人数(单位:人) | 1 | 3 | 2 | 1 | 1 | 1 | 1 |
(1)求销售额的平均数、众数、中位数;
(2)今年公司为了调动员工积极性,提高年销售额,准备采取超额有奖的措施,请根据(1)的结果,通过比较,合理确定今年每个销售员统一的销售额标准是多少万元?