题目内容
【题目】(1)如图1,在矩形中,对角线与相交于点,过点作直线,且交于点,交于点,连接,且平分.
①求证:四边形是菱形;
②直接写出的度数;
(2)把(1)中菱形进行分离研究,如图2,分别在边上,且,连接为的中点,连接,并延长交于点,连接.试探究线段与之间满足的关系,并说明理由;
(3)把(1)中矩形进行特殊化探究,如图3,矩形满足时,点是对角线上一点,连接,作,垂足为点,交于点,连接,交于点.请直接写出线段三者之间满足的数量关系.
【答案】(1)①见解析;②60°;(2)见解析;(3)见解析.
【解析】
(1)①由△DOE≌△BOF,推出EO=OF,由OB=OD,推出四边形EBFD是平行四边形,再证明EB=ED即可;②先证明∠ABD=2∠ADB,推出∠ADB=30°,即可解决问题;
(2)延长到,使得,连接,由菱形性质,,得,由此,由ASA可证得,由此,故
,由,可证得是等边三角形,可得,,由SAS可证,可得,即是等边三角形,
在中,由,,可得,由此可得;
(3)结论:EG2=AG2+CE2.如图3中,将△ADG绕点D逆时针旋转90°得到△DCM,先证明△DEG≌△DEM,再证明△ECM是直角三角形即可解决问题.
(1)①证明:如图1中,
∵四边形是矩形,
∴,
∴,
在和中,
,
∴,
∴,
∵,
∴四边形是平行四边形,
∵,
∴,
∴四边形是菱形.
②∵四边形是菱形,
∴,
∵平分,
∴,
∴=,
∵四边形是矩形,
∴A=,
∴+=,
∴==,
∴;
(2)结论:.
理由:如图2中,延长到,使得,连接.
∵四边形是菱形,,
∴,
∴,
在和中,
,
∴,
∴,
∴,
∴,
∵,
∴是等边三角形,
∴,
在和中,
,
∴,
∴,,
∵,
∴,
∵,
∴,
∴,
∴是等边三角形,
在中,∵,,
∴,
∴.
(3)结论:.
理由:如图3中,将△ADG绕点D逆时针旋转90°得到△DCM,
∵∠FAD+∠DEF=90°,
∴AFED四点共圆,
∴∠EDF=∠DAE=45°,∠ADC=90°,
∴∠ADF+∠EDC=45°,
∵∠ADF=∠CDM,
∴∠CDM+∠CDE=45°=∠EDG,
在△DEM和△DEG中,
,
∴△DEG≌△DEM,
∴GE=EM,
∵∠DCM=∠DAG=∠ACD=45°,AG=CM,
∴∠ECM=90°,
∴EC2+CM2=EM2,
∵EG=EM,AG=CM,
∴GE2=AG2+CE2.
【题目】在《科学》课上,老师讲到温度计的使用方法及液体的沸点时,好奇的王红同学准备测量食用油的沸点,已知食用油的沸点温度高于水的沸点温度(),王红家只有刻度不超过的温度计,她的方法是在锅中倒入一些食用油,用煤气灶均匀加热,并每隔测量一次锅中油温,测量得到的数据如下表:
时间 | 0 | 10 | 20 | 30 | 40 |
油温 | 10 | 30 | 50 | 70 | 90 |
王红发现,烧了时,油沸腾了,则下列说法不正确的是( )
A. 没有加热时,油的温度是
B. 加热,油的温度是
C. 估计这种食用油的沸点温度约是
D. 每加热,油的温度升高