题目内容
【题目】如图,AB是⊙O的直径,点D,E在⊙O上,∠B=2∠ADE,点C在BA的延长线上.
(Ⅰ)若∠C=∠DAB,求证:CE是⊙O的切线;
(Ⅱ)若OF=2,AF=3,求EF的长.
【答案】(Ⅰ)见解析; (Ⅱ)
【解析】
(Ⅰ)连接OE,根据圆周角定理得到∠ADB=90°.∠AOE=2∠ADE,根据切线的判定定理即可得到结论;
(Ⅱ)连接AE,根据圆周角定理得到∠1=∠B.根据相似三角形的性质即可得到结论.
(Ⅰ)连接OE,
∵AB为直径,
∴∠ADB=90°.
∴∠DAB+∠B=90°,
∵∠ADE和∠AOE都对着,
∴∠AOE=2∠ADE,
又∵∠B=2∠ADE,
∴∠AOE=∠B,
又∵∠C=∠DAB,
∴∠C+∠AOE=∠DAB+∠B=90°.
∴∠CEO=90°,
∴OE⊥CE,
∴CE是⊙O的切线;
(Ⅱ)连接AE,
∵ = ,
∴∠1=∠B.
由(Ⅰ)知∠AOE=∠B,
∴∠1=∠AOE,
又∵∠2=∠2,
∴△EAF∽△OAE,
∴,
即,
∴EF=AE,AE2=3×5=15,
∴EF=EA=.
练习册系列答案
相关题目
【题目】垫球是排球队常规训练的重要项目之一.下列图表中的数据是甲、乙、丙三人每人十次垫球测试的成绩.测试规则为连续接球10个,每垫球到位1个记1分.
运动员甲测试成绩表
测试序号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
成绩(分) | 7 | 6 | 8 | 7 | 7 | 5 | 8 | 7 | 8 | 7 |
(1)写出运动员甲测试成绩的众数和中位数;
(2)在他们三人中选择一位垫球成绩优秀且较为稳定的接球能手作为自由人,你认为选谁更合适?为什么? (参考数据:三人成绩的方差分别为、、)
(3)甲、乙、丙三人相互之间进行垫球练习,每个人的球都等可能的传给其他两人,球最先从甲手中传出,第三轮结束时球回到甲手中的概率是多少?(用树状图或列表法解答)