题目内容
【题目】如图,抛物线的对称轴是直线x=2,顶点A的纵坐标为1,点B(4,0)在此抛物线上.
(1)求此抛物线的解析式;
(2)若此抛物线对称轴与x轴交点为C,点D(x,y)为抛物线上一动点,过点D作直线y=2的垂线,垂足为E.
①用含y的代数式表示CD2 , 并猜想CD2与DE2之间的数量关系,请给出证明;
②在此抛物线上是否存在点D,使∠EDC=120°?如果存在,请直接写出D点坐标;如果不存在,请说明理由.
【答案】
(1)
解:依题意,设抛物线的解析式为:y=a(x﹣2)2+1,代入B(4,0),得:
a(4﹣2)2+1=0,解得:a=﹣
∴抛物线的解析式:y=﹣ (x﹣2)2+1
(2)
解:
①猜想:CD2=DE2;
证明:由D(x,y)、C(2,0)、E(x,2)知:
CD2=(x﹣2)2+y2,DE2=(y﹣2)2;
由(1)知:(x﹣2)2=﹣4(y﹣1)=﹣4y+4,代入CD2中,得:
CD2=y2﹣4y+4=(y﹣2)2=DE2.
②由于∠EDC=120°>90°,所以点D必在x轴上方,且抛物线对称轴左右两侧各有一个,以左侧为例:
延长ED交x轴于F,则EF⊥x轴;
在Rt△CDF中,∠FDC=180°﹣120°=60°,∠DCF=30°,则:
CD=2DF、CF= DF;
设DF=m,则:CF= m、CD=DE=2m;
∵EF=ED+DF=2m+m=2,
∴m= ,DF=m= ,CF= m= ,OF=OC﹣CF=2﹣ ,
∴D(2﹣ , );
同理,抛物线对称轴右侧有:D(2+ , );
综上,存在符合条件的D点,且坐标为(2﹣ , )或(2+ , ).
【解析】(1)已知抛物线的顶点坐标,可以将抛物线的解析式设为顶点式,再代入B点的坐标求解即可.(2)①由坐标系两点间的距离公式不难得到CD2和DE2的表达式,再将(1)的抛物线解析式代入CD2的表达式中,用y替换掉x后,比较两者的大小关系即可;②∠EDC是钝角,那么点D一定在x轴的上方,且抛物线对称轴的左右两侧各一个(它们关于抛物线对称轴对称),延长ED交x轴于F,在Rt△CDF中,∠DCF=30°,那么DC=2DF、CF= DF,设出DF的长后,可以表示出CD、DE的长,由EF=ED+DF=2即可得出DF的长,从而求出点D的坐标.