题目内容
【题目】 在建设社会主义新农村过程中,某村委决定投资开发项目,现有6个项目可供选择,各项目所需资金及预计年利润如下表:
所需资金(亿元) | 1 | 2 | 4 | 6 | 7 | 8 |
预计利润(千万元) | 0.2 | 0.35 | 0.55 | 0.7 | 0.9 | 1 |
(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?
(2)如果预计要获得0.9千万元的利润,你可以怎样投资项目?
(3)如果该村可以拿出10亿元进行多个项目的投资,预计最大年利润是多少?说明理由.
【答案】(1)所需资金和利润之间的关系,所需资金为自变量,年利润为因变量;(2)可以投资一个7亿元的项目;也可以投资一个2亿元,再投资一个4亿元的项目;还可以投资一个1亿元,再投资一个6亿元的项目;(3)最大利润是1.45亿元,理由详见解析.
【解析】
(1)分别根据变量、因变量的定义分别得出即可;
(2)根据图表分析得出投资方案;
(3)分别求出不同方案的利润进而得出答案.
解:(1)所需资金和利润之间的关系.
所需资金为自变量.年利润为因变量;
(2)可以投资一个7亿元的项目.
也可以投资一个2亿元,再投资一个4亿元的项目.
还可以投资一个1亿元,再投资一个6亿元的项目.
答:可以投资一个7亿元的项目;也可以投资一个2亿元,再投资一个4亿元的项目;还可以投资一个1亿元,再投资一个6亿元的项目.
(3)共三种方案:①1亿元,2亿元,7亿元,利润是亿元.
②2亿元,8亿元,利润是亿元.
③4亿元,6亿元,利润是亿元.
∴最大利润是亿元.
答:最大利润是亿元.
【题目】某学习小组在学习了函数及函数图象的知识后,想利用此知识来探究周长一定的矩形其边长分别为多少时面积最大. 请将他们的探究过程补充完整.
(1)列函数表达式:若矩形的周长为8,设矩形的一边长为x,面积为y,则有y=____________;
(2)上述函数表达式中,自变量x的取值范围是____________;
(3)列表:
x | … | 0.5 | 1 | 1.5 | 2 | 2.5 | 3 | 3.5 | … |
y | … | 1.75 | 3 | 3.75 | 4 | 3.75 | 3 | m | … |
写出m=____________;
(4)画图:在平面直角坐标系中已描出了上表中部分各对应值为坐标的点,请你画出该函数的图象;
(5)结合图象可得,x=____________时,矩形的面积最大;写出该函数的其它性质(一条即可):____________.