题目内容

【题目】如图,在平行四边形ABCD中,AB=5,BC=10,F为AD的中点,CEAB于E,设ABC=α(60°≤α<90°).

(1)当α=60°时,求CE的长;

(2)当60°<α<90°时,

是否存在正整数k,使得EFD=kAEF?若存在,求出k的值;若不存在,请说明理由.

连接CF,当CE2﹣CF2取最大值时,求tanDCF的值.

【答案】解:(1)α=60°,BC=10,sinα=,即sin60°=,解得CE=

(2)存在k=3,使得EFD=kAEF。理由如下:

连接CF并延长交BA的延长线于点G,

F为AD的中点,AF=FD。

在平行四边形ABCD中,ABCD,∴∠G=DCF。

AFG和CFD中,

∵∠G=DCF, G=DCF,AF=FD,

∴△AFG≌△CFD(AAS)。CF=GF,AG=CD。

CEAB,EF=GF。∴∠AEF=G。

AB=5,BC=10,点F是AD的中点,AG=5,AF=AD=BC=5。AG=AF。

∴∠AFG=G。

AFG中,EFC=AEF+G=2AEF,

∵∠CFD=AFG,∴∠CFD=AEF。

∴∠EFD=EFC+CFD=2AEF+AEF=3AEF,

因此,存在正整数k=3,使得EFD=3AEF。

设BE=x,AG=CD=AB=5,EG=AE+AG=5﹣x+5=10﹣x,

在RtBCE中,CE2=BC2﹣BE2=100﹣x2

在RtCEG中,CG2=EG2+CE2=(10﹣x)2+100﹣x2=200﹣20x。

CF=GF(中已证),CF2=(CG)2=CG2=(200﹣20x)=50﹣5x。

CE2﹣CF2=100﹣x2﹣50+5x=﹣x2+5x+50=﹣(x﹣2+50+

当x=,即点E是AB的中点时,CE2﹣CF2取最大值。

此时,EG=10﹣x=10﹣,CE=

解析锐角三角函数定义,特殊角的三角函数值,平行四边形的性质,对顶角的性质,全等三角形的判定和性质,直角三角形斜边上的中线性质,等腰三角形的性质,二次函数的最值,勾股定理。

(1)利用60°角的正弦值列式计算即可得解。

(2)连接CF并延长交BA的延长线于点G,利用“角边角”证明AFG和CFD全等,根据全等三角形对应边相等可得CF=GF,AG=CD,再利用直角三角形斜边上的中线等于斜边的一半可得EF=GF,再根据AB、BC的长度可得AG=AF,然后利用等边对等角的性质可得AEF=G=AFG,根据三角形的一个外角等于与它不相邻的两个内角的和可得EFC=2G,然后推出EFD=3AEF,从而得解。

设BE=x,在RtBCE中,利用勾股定理表示出CE2,表示出EG的长度,在RtCEG中,利用勾股定理表示出CG2,从而得到CF2,然后相减并整理,再根据二次函数的最值问题解答。

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网