题目内容
【题目】如图,△ABC的外角∠ACD的平分线CP与内角∠ABC平分线BP交于点P,若∠BPC=40°,则∠CAP= .
【答案】50°
【解析】
试题分析:根据外角与内角性质得出∠BAC的度数,再利用角平分线的性质以及直角三角形全等的判定,得出∠CAP=∠FAP,即可得出答案.延长BA,作PN⊥BD,PF⊥BA,PM⊥AC, 设∠PCD=x°,
∵CP平分∠ACD, ∴∠ACP=∠PCD=x°,PM=PN, ∵BP平分∠ABC, ∴∠ABP=∠PBC,PF=PN,
∴PF=PM, ∵∠BPC=40°, ∴∠ABP=∠PBC=∠PCD﹣∠BPC=(x﹣40)°,
∴∠BAC=∠ACD﹣∠ABC=2x°﹣(x°﹣40°)﹣(x°﹣40°)=80°, ∴∠CAF=100°,
在Rt△PFA和Rt△PMA中, ∵, ∴Rt△PFA≌Rt△PMA(HL), ∴∠FAP=∠PAC=50°.
练习册系列答案
相关题目