题目内容

【题目】如图,抛物线y=ax2+bx+c与两坐标轴的交点分别为A、B、C,且OA=OC=1,则下列关系中正确的是(
A.a+b=﹣1
B.a﹣b=﹣1
C.b<2a
D.ac<0

【答案】B
【解析】解:∵OA=OC=1, ∴A(﹣1,0),C(0,1),
把A(﹣1,0),C(0,1)代入y=ax2+bx+c得a﹣b+c=0,c=1,
∴a﹣b=﹣1,所以A选项错误,B选项正确;
∵抛物线开口向上,
∴a>0,
∵抛物线与y轴的交点在x轴上方,
∴c>0,
∴ac>0,所以D选项错误;
∵x=﹣ <﹣1,
∴b>2a,所以C选项错误.
故选B.
【考点精析】根据题目的已知条件,利用二次函数图象以及系数a、b、c的关系和抛物线与坐标轴的交点的相关知识可以得到问题的答案,需要掌握二次函数y=ax2+bx+c中,a、b、c的含义:a表示开口方向:a>0时,抛物线开口向上; a<0时,抛物线开口向下b与对称轴有关:对称轴为x=-b/2a;c表示抛物线与y轴的交点坐标:(0,c);一元二次方程的解是其对应的二次函数的图像与x轴的交点坐标.因此一元二次方程中的b2-4ac,在二次函数中表示图像与x轴是否有交点.当b2-4ac>0时,图像与x轴有两个交点;当b2-4ac=0时,图像与x轴有一个交点;当b2-4ac<0时,图像与x轴没有交点.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网