题目内容
【题目】知识迁移 当a>0且x>0时,因为 ,所以x﹣ + ≥0,从而x+ ≥ (当x= )是取等号).
记函数y=x+ (a>0,x>0).由上述结论可知:当x= 时,该函数有最小值为2 .
直接应用
已知函数y1=x(x>0)与函数y2= (x>0),则当x=1时,y1+y2取得最小值为2.
变形应用
已知函数y1=x+1(x>﹣1)与函数y2=(x+1)2+4(x>﹣1),求 的最小值,并指出取得该最小值时相应的x的值.
实际应用
已知某汽车的一次运输成本包含以下三个部分,一是固定费用,共360元;二是燃油费,每千米1.6元;三是折旧费,它与路程的平方成正比,比例系数为0.001.设该汽车一次运输的路程为x千米,求当x为多少时,该汽车平均每千米的运输成本最低?最低是多少元?
【答案】解:直接应用: ∵函数y=x+ (a>0,x>0),由上述结论可知:当x= 时,该函数有最小值为2 .
∴函数y1=x(x>0)与函数y2= (x>0),则当x=1时,y1+y2取得最小值为2.
变形应用
已知函数y1=x+1(x>﹣1)与函数y2=(x+1)2+4(x>﹣1),
则 = =(x+1)+ 的最小值为:2 =4,
∵当(x+1)+ =4时,
整理得出:x2﹣2x+1=0,
解得:x1=x2=1,
检验:x=1时,x+1=2≠0,
故x=1是原方程的解,
故 的最小值为4,相应的x的值为1;
实际应用
设行驶x千米的费用为y,则由题意得,y=360+1.6x+0.001x2 ,
故平均每千米的运输成本为: =0.001x+ +1.6=0.001x+ +1.6,
由题意可得:当0.001x= 时, 取得最小,此时x=600km,
此时 ≥2 +1.6=2.8,
即当一次运输的路程为600千米时,平均每千米的运输成本最低,最低费用为:2.8元.
答:汽车一次运输的路程为600千米,平均每千米的运输成本最低,最低是2.8元.
【解析】直接运用:可以直接套用题意所给的结论,即可得出结果. 变形运用:先得出 的表达式,然后将(x+1)看做一个整体,继而再运用所给结论即可.
实际运用:设行驶x千米的费用为y,则可表示出平均每千米的运输成本,利用所给的结论即可得出答案.