题目内容
【题目】如图,AB是⊙O的直径,C是⊙O上一点,AD垂直于过点C的切线,垂足为D.
(1)求证:AC平分∠BAD;
(2)若AC=2 ,CD=2,求⊙O的直径.
【答案】
(1)证明:如图,连接OC,
∵DC切⊙O于C,
∴OC⊥CF,
∴∠ADC=∠OCF=90°,
∴AD∥OC,
∴∠DAC=∠OCA,
∵OA=OC,
∴∠OAC=∠OCA,
∴∠DAC=∠OAC,即AC平分∠BAD
(2)解:连接BC.
∵AB是直径,
∴∠ACB=90°=∠ADC,
∵∠DAC=∠BAC,
∴△ADC∽△ACB,
∴ ,
在Rt△ADC中,AC=2 ,CD=2,
∴AD=4,
∴ ,
∴AB=5.
【解析】(1)连接OC,根据切线的性质判断出AD∥OC,得到∠DAC=∠OCA,再根据OA=OC得到∠OAC=∠OCA,可得AC平分∠BAD.(2)连接BC,得到△ADC∽△ACB,根据相似三角形的性质即可求出AB的长.
【考点精析】根据题目的已知条件,利用角平分线的性质定理和勾股定理的概念的相关知识可以得到问题的答案,需要掌握定理1:在角的平分线上的点到这个角的两边的距离相等; 定理2:一个角的两边的距离相等的点,在这个角的平分线上;直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2.
【题目】小军同学在学校组织的社会实践活动中,负责了解他所居住的小区450户具名的生活用水情况,他从中随机调查了50户居民的月均用水量(单位:t),并绘制了样本的频数分布表:
月均用水量 | 2≤x<3 | 3≤x<4 | 4≤x<5 | 5≤x<6 | 6≤x<7 | 7≤x<8 | 8≤x<9 |
频数 | 2 | 12 | ① | 10 | ② | 3 | 2 |
百分比 | 4% | 24% | 30% | 20% | ③ | 6% | 4% |
(1)请根据题中已有的信息补全频数分布: , , ;
(2)如果家庭月均用水量在5≤x<8范围内为中等用水量家庭,请你通过样本估计总体中的中等用水量家庭大约有多少户?
(3)记月均用水量在2≤x<3范围内的两户为a1 , a2 , 在7≤x<8范围内的3户b1、b2、b3 , 从这5户家庭中任意抽取2户,试完成下表,并求出抽取出的2户家庭来自不同范围的概率.
a1 | a2 | b1 | b2 | b3 | |
a1 | |||||
a2 | |||||
b1 | |||||
b2 | |||||
b3 |