题目内容

【题目】如图,AB是⊙O的直径,C是⊙O上一点,AD垂直于过点C的切线,垂足为D.
(1)求证:AC平分∠BAD;
(2)若AC=2 ,CD=2,求⊙O的直径.

【答案】
(1)证明:如图,连接OC,

∵DC切⊙O于C,

∴OC⊥CF,

∴∠ADC=∠OCF=90°,

∴AD∥OC,

∴∠DAC=∠OCA,

∵OA=OC,

∴∠OAC=∠OCA,

∴∠DAC=∠OAC,即AC平分∠BAD


(2)解:连接BC.

∵AB是直径,

∴∠ACB=90°=∠ADC,

∵∠DAC=∠BAC,

∴△ADC∽△ACB,

在Rt△ADC中,AC=2 ,CD=2,

∴AD=4,

∴AB=5.


【解析】(1)连接OC,根据切线的性质判断出AD∥OC,得到∠DAC=∠OCA,再根据OA=OC得到∠OAC=∠OCA,可得AC平分∠BAD.(2)连接BC,得到△ADC∽△ACB,根据相似三角形的性质即可求出AB的长.
【考点精析】根据题目的已知条件,利用角平分线的性质定理和勾股定理的概念的相关知识可以得到问题的答案,需要掌握定理1:在角的平分线上的点到这个角的两边的距离相等; 定理2:一个角的两边的距离相等的点,在这个角的平分线上;直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网