题目内容

【题目】如图所示,已知△ABC内接于⊙O,点D在OC的延长线上,sin B=D30°

(1)求证AD是⊙O的切线;

(2)若AC=6,求AD的长.

【答案】(1) 证明见解析; (2)

【解析】试题分析:1)要证明ADO的切线,只要证明OAD=90°即可;
2)根据已知可得AOC是等边三角形,从而得到OA=AC=6,则可以利用勾股定理求得AD的长.

解:(1) 如图所示,连接OA.∵sin B=,∴∠B=30°,∴∠AOC=60°.∵∠D=30°,∴∠OAD=180°-∠D-∠AOD=90°.∴AD是⊙O的切线. 

(2)∵OA=OC,∠AOC=60°,∴△AOC是等边三角形.∴OA=AC=6.∵∠OAD=90°,∠D=30°,∴AD=

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网