题目内容
【题目】如图,在Rt△ABC中,∠C=90°,∠A=30°,AB=4,动点P从点A出发,沿AB以每秒2个单位长度的速度向终点B运动.过点P作PD⊥AC于点D(点P不与点A、B重合),作∠DPQ=60°,边PQ交射线DC于点Q.设点P的运动时间为t秒.
(1)用含t的代数式表示线段DC的长;
(2)当点Q与点C重合时,求t的值;
(3)设△PDQ与△ABC重叠部分图形的面积为S,求S与t之间的函数关系式;
(4)当线段PQ的垂直平分线经过△ABC一边中点时,直接写出t的值.
【答案】(1)CD= 2﹣t(0<t<2);(2)1;(3)见解析;(4)t的值为秒或秒或秒.
【解析】
(1)先求出AC,用三角函数求出AD,即可得出结论;
(2)利用AD+DQ=AC,即可得出结论;
(3)分两种情况,利用三角形的面积公式和面积差即可得出结论;
(4)分三种情况,利用锐角三角函数,即可得出结论.
(1)在Rt△ABC中,∠A=30°,AB=4,
∴AC=2,
∵PD⊥AC,
∴∠ADP=∠CDP=90°,
在Rt△ADP中,AP=2t,
∴DP=t,AD=APcosA=2t×=t,
∴CD=AC﹣AD=2﹣t(0<t<2);
(2)在Rt△PDQ中,∵∠DPC=60°,
∴∠PQD=30°=∠A,
∴PA=PQ,
∵PD⊥AC,
∴AD=DQ,
∵点Q和点C重合,
∴AD+DQ=AC,
∴2×t=2,
∴t=1;
(3)当0<t≤1时,S=S△PDQ=DQ×DP=×t×t=t2,
当1<t<2时,如图2,
CQ=AQ﹣AC=2AD﹣AC=2t﹣2=2(t﹣1),
在Rt△CEQ中,∠CQE=30°,
∴CE=CQtan∠CQE=2(t﹣1)×=2(t﹣1),
∴S=S△PDQ﹣S△ECQ=×t×t﹣×2(t﹣1)×2(t﹣1)=﹣t2+4t﹣2,
∴S=;
(4)当PQ的垂直平分线过AB的中点F时,如图3,
∴∠PGF=90°,PG=PQ=AP=t,AF=AB=2,
∵∠A=∠AQP=30°,
∴∠FPG=60°,
∴∠PFG=30°,
∴PF=2PG=2t,
∴AP+PF=2t+2t=2,
∴t=;
当PQ的垂直平分线过AC的中点M时,如图4,
∴∠QMN=90°,AN=AC=,QM=PQ=AP=t,
在Rt△NMQ中,NQ=,
∵AN+NQ=AQ,
∴+=2t,
∴t=,
当PQ的垂直平分线过BC的中点时,如图5,
∴BF=BC=1,PE=PQ=t,∠H=30°,
∵∠ABC=60°,
∴∠BFH=30°=∠H,
∴BH=BF=1,
在Rt△PEH中,PH=2PE=2t,
∴AH=AP+PH=AB+BH,
∴2t+2t=5,
∴t=,
即:当线段PQ的垂直平分线经过△ABC一边中点时,t的值为秒或秒或秒.