题目内容
【题目】如图,抛物线与直线分别相交于,两点,且此抛物线与轴的一个交点为,连接,.已知,.
(1)求抛物线的解析式;
(2)在抛物线对称轴上找一点,使的值最大,并求出这个最大值;
(3)点为轴右侧抛物线上一动点,连接,过点作交轴于点,问:是否存在点使得以,,为顶点的三角形与相似?若存在,请求出所有符合条件的点的坐标;若不存在,请说明理由.
【答案】(1);(2)点M的坐标为(,)时,取最大值为;(3)存在点.
【解析】
(1)根据待定系数法求解即可;
(2)根据三角形的三边关系可知:当点、、三点共线时,可使的值最大,据此求解即可;
(3)先求得,再过点作于点,过点作轴于点,如图,这样就把以,,为顶点的三角形与相似问题转化为以,,为顶点的三角形与相似的问题,再分当时与时两种情况,分别求解即可.
解:(1)将,代入得:
,解得:,
∴抛物线的解析式是;
(2)解方程组:,得,,
∵,∴
当点、、三点不共线时,根据三角形三边关系得,
当点、、三点共线时,,
∴当点、、三点共线时,取最大值,即为的长,
如图,过点作BE⊥x轴于点,则在中,由勾股定理得:,∴取最大值为;
易求得直线BC的解析式为:y=-x-3,抛物线的对称轴是直线,当时,,∴点M的坐标为(,);
∴点M的坐标为(,)时,取最大值为;
(3)存在点,使得以、、为顶点的三角形与相似.
设点坐标为,
在中,∵,∴,
在中,∵,∴,
∴,,
过点作于点,过点作轴于点,如图,
∵,,∴∽,
∵,
∴①当时,∽,
∴,解得,,(舍去)
∴点的纵坐标为,∴点为;
②当时,∽,
∴,解得(舍去),(舍去),
∴此时无符合条件的点;
综上所述,存在点.
练习册系列答案
相关题目