题目内容
【题目】如图①,将一副直角三角板放在同一条直线AB上,其中∠ONM=30°,∠OCD=45°.
(1)将图①中的三角板OMN沿BA的方向平移至图②的位置,MN与CD相交于点E,求∠CEN的度数;
(2)将图①中的三角板OMN绕点O按逆时针方向旋转,使∠BON=30°,如图③,MN与CD相交于点E,求∠CEN的度数;
(3)将图①中的三角板OMN绕点O按每秒30°的速度按逆时针方向旋转一周,在旋转的过程中,在第____________秒时,直线MN恰好与直线CD垂直.(直接写出结果)
【答案】(1)105°;(2)135°;(3)5.5或11.5.
【解析】
(1)在△CEN中,用三角形内角和定理即可求出;
(2)由∠BON=30°,∠N=30°可得MN∥CB,再根据两直线平行,同旁内角互补即可求出∠CEN的度数.
(3)画出图形,求出在MN⊥CD时的旋转角,再除以30°即得结果.
解:(1)在△CEN中,∠CEN=180°-∠ECN-∠CNE=180°-45°-30°=105°;
(2)∵∠BON=30°,∠N=30°,
∴∠BON=∠N,
∴MN∥CB.
∴∠OCD+∠CEN=180°,
∵∠OCD=45°
∴∠CEN=180°-45°=135°;
(3)如图,MN⊥CD时,旋转角为360°-90°-45°-60°=165°,或360°-(60°-45°)=345°,所以在第165°÷30°=5.5或345°÷30°=11.5秒时,直线MN恰好与直线CD垂直.
练习册系列答案
相关题目