题目内容

【题目】如图,点D在⊙O的直径AB的延长线上,点C在⊙O上,AC=CDACD=120°

1)求证:CD是⊙O的切线;

2)若⊙O的半径为2,求图中阴影部分的面积.

【答案】1)证明见解析;2)图中阴影部分的面积为

【解析】试题分析:(1)连接半径CO,证明OC⊥CD即可得出结论;(2)图中阴影部分面积用直角三角形COD的面积减去扇形COB的面积即可.

试题解析:(1)连接OC

∵AC=CD∠ACD=120°∴∠A=∠D=30°∵OA=OC

∴∠2=∠A=30°∴∠OCD=180°﹣∠A﹣∠D﹣∠2=180-30-30-30=90°.即OC⊥CDOC又是半径,∴CD⊙O的切线.(2)由图可知∠1=2∠2=60,又因为OC=2,所以在直角三角形COD中,CD=2,图中阴影部分面积用直角三角形COD的面积减去扇形COB的面积,=2×2÷2-=2-.所以图中阴影部分的面积是2-.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网