题目内容
【题目】如图,四边形ABCD内接于⊙O,∠BAD=90°,点E在BC的延长线上,且∠DEC=∠BAC.
(1)求证:DE是⊙O的切线;
(2)若AC∥DE,当AB=12,CE=3时,求AC的长.
【答案】(1)证明见解析(2)
【解析】
(1)先判断出BD是圆O的直径,再判断出BD⊥DE,即可得出结论;
(2)先判断出AC⊥BD,进而求出BC=AB=8,进而判断出△BCD∽△DCE,求出CD,再用勾股定理求出BD,最后判断出△CFD∽△BCD,即可得出结论.
(1)如图,连接BD,交AC于点F.
∵ ∠BAD=90°, ∴ BD是直径.
∴ ∠BCD=90°. ∴ ∠DEC+∠CDE=90°.
∵ ∠DEC=∠BAC, ∴ ∠BAC+∠CDE=90°.
∵ ∠BAC=∠BDC, ∴ ∠BDC+∠CDE=90°.
∴ ∠BDE=90°,即 BD⊥DE.
∵ 点D在⊙O上,
∴ DE是⊙O的切线.
(2)∵ DE∥AC,∠BDE=90°,
∴ ∠BFC=90°.
∴ CB=AB=12,AF=CF= AC,
∵ ∠CDE+∠BDC=90°,∠BDC+∠CBD=90°.
∴ ∠CDE=∠CBD.
∵ ∠DCE=∠BCD=90°, ∴ △BCD∽△DCE,
∴ = , ∴ CD=6.∴ BD=6 .
同理:△CFD∽△BCD,∴ = , ∴ CF= .
∴ AC=2AF= .
练习册系列答案
相关题目