题目内容
【题目】如图,在平面直角坐标系中,二次函数y=x2-2x-3的图象与x轴交于A,B两点,与y轴交于点C,连接BC,点D为抛物线的顶点,点P是第四象限的抛物线上的一个动点(不与点D重合).
(1)求∠OBC的度数;
(2)连接CD,BD,DP,延长DP交x轴正半轴于点E,且S△OCE=S四边形OCDB,求此时P点的坐标;
(3)过点P作PF⊥x轴交BC于点F,求线段PF长度的最大值.
【答案】(1) 45°;(2) P(2,-3);(3).
【解析】
(1)由抛物线解析式可得三角形各点坐标,判断三角形形状,即可得到其内角;
(2)过点D作DH⊥x轴于点H,由不规则图象面积分割求和的方法求得面积,得到点E坐标,再求得直线ED解析式,联立抛物线方程即可得到点P坐标;
(3)先分别表示出点F和点P坐标,再利用已知条件用其坐标表示线段PF的长度,再根据二次函数性质求得其最大值即可.
解:(1)A(-1,0),B(3,0),C(0,-3),D(1,-4).∵OC=OB=3,∴△OBC为等腰直角三角形,∴∠OBC=45°.
(2)过点D作DH⊥x轴于点H,此时S四边形OCDB=S梯形OCDH+S△HBD,∵OH=1,OC=3,HD=4,HB=2,∴S梯形OCDH=·(OC+HD)·OH=,S△HBD=·HD·HB=4,∴S四边形OCDB=.∴S△OCE=S四边形OCDB==·OC·OE,∴OE=5,∴E(5,0).∴lDE:y=x-5.∵DE交抛物线于P,设P(x,y),∴x2-2x-3=x-5,解得 x=2 或x=1(D点,舍去),∴xP=2,代入lDE:y=x-5,∴P(2,-3).
(3)如图,lBC:y=x-3.∵F在BC上,∴yF=xF-3.∵P在抛物线上,∴yP=x-2xP-3,∴PF=yF-yP=xF-3-(x-2xP-3).∵xP=xF,∴PF=-x+3xP=-(xP-)2+ (1<xP<3),∴当xP=时,线段PF长度最大,最大值为.