题目内容
【题目】如图:在△ABC中,AB=10,AC=4,AD为BC边上的中线,则AD的取值范围是_____________。
【答案】3<AD<7
【解析】
延长AD到点E,使DE=DA,连接BE,利用SAS证得△BDE≌△CDA,进而得到BE=CA=4,利用三角形两边之和大于第三边,两边之差小于第三边,即可求得AE的取值范围,进而求出AD的取值范围.
如图,延长AD到点E,使DE=DA,连接BE,
∵在△ABC中,AD是BC边上的中线
∴BD=CD
在△BDE和△CDA中
∴△BDE≌△CDA(SAS)
∴BE=CA=4
在△ABE中,AB+BE>AE,且AB﹣BE<AE
∵AB=10,AC=4,
∴6<AE<14
∴3<AD<7
故答案为3<AD<7
练习册系列答案
相关题目