题目内容
【题目】如图是抛物线型拱桥,当拱顶离水面8m时,水面宽AB为12m.当水面上升6m时达到警戒水位,此时拱桥内的水面宽度是多少m?
下面给出了解决这个问题的两种方法,请补充完整:
方法一:如图1,以点A为原点,AB所在直线为x轴,建立平面直角坐标系xOy,
此时点B的坐标为( , ),抛物线的顶点坐标为( , ),
可求这条抛物线所表示的二次函数的解析式为 .
当y=6时,求出此时自变量x的取值,即可解决这个问题.
方法二:如图2,以抛物线顶点为原点,对称轴为y轴,建立平面直角坐标系xOy,
这时这条抛物线所表示的二次函数的解析式为 .
当y= 时,求出此时自变量x的取值为 ,即可解决这个问题.
【答案】12,0,6,8,y=﹣x2+x,y=﹣x2;﹣2,±3.
【解析】
方法一根据抛物线性质可得出B、O坐标,然后设二次函数的解析式为y=a(x﹣6)2+8再将B点坐标代入即可得到a的值.
方法二,设二次函数的解析式为y=ax2将B点代入即可得到a的值,当y=﹣2时,代入解析式即可求出答案.
解:方法一:B(12,0),O(6,8),
设二次函数的解析式为y=a(x﹣6)2+8,
把B点的坐标代入得,a=﹣,
∴二次函数的解析式为y=﹣x2+x;
方法二:设二次函数的解析式为y=ax2,
把B(6,﹣8)代入得,a=﹣,
∴二次函数的解析式为y=﹣x2;
y=﹣2时,求出此时自变量x的取值为±3,
故答案为:12,0,6,8,y=﹣x2+x,y=﹣x2;﹣2,±3.
【题目】甲、乙人5场10次投篮命中次数如图
(1)填写表格.
平均数 | 众数 | 中位数 | 方差 | |
甲 | ______ | 8 | 8 | ______ |
乙 | 8 | ______ | ______ | 3.2 |
(2)①教练根据这5个成绩,选择甲参加投篮比赛,理由是什么?
②如果乙再投篮1场,命中8次,那么乙的投监成绩的方差将会怎样变化?(“变大”“变小”或”不变”)