题目内容
【题目】已知关于x的一元二次方程x2﹣2(a+1)x+a2+3=0有两个实数根x1,x2
(1)求实数a的取值范围
(2)若等腰△ABC的三边长分别为x1,x2,6,求△ABC的周长
(3)是否存在实数a,使x1,x2恰是一个边长为的菱形的两条对角线的长?若存在,求出这个菱形的面积;若不存在,说明理由.
【答案】(1)a≥1;(2)14;(3)存在,4.
【解析】
(1)根据一元二次方程根的判别式建立不等式求解即可;
(2)首先分x1=x2,当x1=6或x2=6两种情况讨论,之后再分情况代入求出a的值再求出对应的x的值进一步计算即可;
(3)首先根据根与系数的关系得出x1+x2=2(a+1),x1x2=a2+3,根据勾股定理建立方程,然后进一步变形代入计算出a的值,然后利用菱形面积等于对角线乘积一半求出面积即可.
解:(1)根据题意得△=4(a+1)2﹣4(a2+3)=8a﹣8≥0, ∴a≥1;
(2)①当等腰△ABC底边为6,x1=x2时,△=0,则a=1,
方程变形为x2﹣4x+4=0,解得x1=x2=2,而2+2<6,不符合三角形三边的关系,舍去;
②当等腰△ABC腰长为6,x1=6或x2=6时,把x=6代入方程x2﹣2(a+1)x+a2+3=0得36﹣12(a+1)+a2+3=0,解得a1=3,a2=9,
当a=3时,方程化为x2﹣8x+12=0,解得x=2或6,三角形三边为6、6、2,则△ABC的周长为6+6+2=14;
当a=9时,方程化为x2﹣20x+84=0,解得x=14或6,而6+6<14,不符合三角形三边的关系,舍去;
∴△ABC的周长为14;
(3)存在.
由题意得:x1+x2=2(a+1),x1x2=a2+3,
∵x12+x22=()2,
∴(x1+x2)2﹣2x1x2=22,
即4(a+1)2﹣2(a2+3)=88,
整理得a2+4a﹣45=0,解得a1=5,a2=﹣9(舍去),
当a=5,方程化为x2﹣12x+28=0,则x1x2=28,所以这个菱形的面积=×28=14.