题目内容
【题目】已知抛物线y=mx2+2mx+m-1和直线y=mx+m-1,且m≠0.
(1)求抛物线的顶点坐标;
(2)试说明抛物线与直线有两个交点;
(3)已知点T(t,0),且-1≤t≤1,过点T作x轴的垂线,与抛物线交于点P,与直线交于点Q,当0<m≤3时,求线段PQ长的最大值.
【答案】(1)(-1,-1);(2)见解析;(3)PQ的最大值为6.
【解析】
(1)化为顶点式即可求顶点坐标;
(2)由y=mx2+2mx+m-1和y=mx+m-1可得:mx2+2mx+m-1=mx+m-1,整理得,mx(x+1)=0,即可知抛物线与直线有两个交点;
(3)由(2)可得:抛物线与直线交于(-1,-1)和(0,m-1)两点,点P的坐标为(t,mt2+2mt+m-1),点Q的坐标为(t,mt+m-1). 故分两种情况进行讨论:①如图1,当-1≤t≤0时;②如图2,当0<t≤1时,求出对应的最大值即可.
解:(1)∵y=mx2+2mx+m-1=m(x+1)2-1,
∴抛物线的顶点坐标为(-1,-1).
(2)由y=mx2+2mx+m-1和y=mx+m-1可得:mx2+2mx+m-1=mx+m-1,
mx2+mx=0,mx(x+1)=0,
∵m≠0,
∴x1=0,x2=-1.
∴抛物线与直线有两个交点.
(3)由(2)可得:抛物线与直线交于(-1,-1)和(0,m-1)两点,
点P的坐标为(t,mt2+2mt+m-1),点Q的坐标为(t,mt+m-1).
①如图1,当-1≤t≤0时,PQ==.
∵m>0,
当时,PQ有最大值,且最大值为.
∵0<m≤3,∴≤,即PQ的最大值为.
②如图2,当0<t≤1时,PQ==.
∵m>0,
∴当t=1时,PQ有最大值,且最大值为2m.
∵0<m≤3,
∴0<2m≤6,即PQ的最大值为6.
综上所述,PQ的最大值为6.